2024-08-29 02:56 AM
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define TIMCLOCK 12500000
#define PRESCALAR 250
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim3;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_TIM1_Init(void);
static void MX_TIM3_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/*---------------------------------------------------------------------------*/
uint8_t current_step = 0;
uint32_t dutyCycle = 0;
uint32_t pulseWidth;
uint32_t compareValue = 0;
volatile uint8_t newDataAvailable = 0;
uint32_t IC_Val1 = 0;
uint32_t IC_Val2 = 0;
uint32_t Difference = 0;
int Is_First_Captured = 0;
volatile uint32_t usWidth = 0;
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
{
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1) // if the interrupt source is channel1
{
if (Is_First_Captured==0) // if the first value is not captured
{
IC_Val1 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_1); // read the first value
Is_First_Captured = 1; // set the first captured as true
}
else // if the first is already captured
{
IC_Val2 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_1); // read second value
if (IC_Val2 > IC_Val1)
{
Difference = IC_Val2-IC_Val1;
}
else if (IC_Val1 > IC_Val2)
{
Difference = (0xffffffff - IC_Val1) + IC_Val2;
}
float refClock = TIMCLOCK/(PRESCALAR);
float mFactor = 1000000/refClock;
usWidth = Difference*mFactor;
newDataAvailable = 1;
__HAL_TIM_SET_COUNTER(htim, 0); // reset the counter
Is_First_Captured = 0; // set it back to false
}
}
}
/*************************** Commutation step function ************************************/
void AH_BL()
{
// This is step 1 of commutation
// Set all channels to 0 first
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 0);
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_2, 0);
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_3, 0);
// Enable TIM1 CH1 (Phase A High-Side)
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1);
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, compareValue); // Phase A High-Side ON
// Enable TIM2 CH2N (Phase B Low-Side)
HAL_TIMEx_PWMN_Start(&htim1, TIM_CHANNEL_2);
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_2, compareValue); // Phase B Low-Side ON
// Disable other channels
HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_2); // Phase B High-Side OFF
HAL_TIMEx_PWMN_Stop(&htim1, TIM_CHANNEL_1); // Phase A Low-Side OFF
HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_3); // Phase C High-Side OFF
HAL_TIMEx_PWMN_Stop(&htim1, TIM_CHANNEL_3); // Phase C Low-Side OFF
}
void AH_CL()
{
// This is step 2 of commutation
// Set all channels to 0 first
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 0);
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_2, 0);
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_3, 0);
// Enable TIM1 CH1 (Phase A High-Side)
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1);
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, compareValue); // Phase A High-Side ON
// Enable TIM3 CH2N (Phase C Low-Side)
HAL_TIMEx_PWMN_Start(&htim1, TIM_CHANNEL_3);
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_3, compareValue); // Phase C Low-Side ON
// Disable other channels
HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_3); // Phase C High-Side OFF
HAL_TIMEx_PWMN_Stop(&htim1, TIM_CHANNEL_1); // Phase A Low-Side OFF
HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_2); // Phase B High-Side OFF
HAL_TIMEx_PWMN_Stop(&htim1, TIM_CHANNEL_2); // Phase B Low-Side OFF
}
void BH_CL()
{
// This is step 3 of commutation
// Set all channels to 0 first
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 0);
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_2, 0);
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_3, 0);
// Enable TIM2 CH1 (Phase B High-Side)
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_2);
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_2, compareValue); // Phase B High-Side ON
// Enable TIM3 CH2N (Phase C Low-Side)
HAL_TIMEx_PWMN_Start(&htim1, TIM_CHANNEL_3);
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_3, compareValue); // Phase C Low-Side ON
// Disable other channels
HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_3); // Phase C High-Side OFF
HAL_TIMEx_PWMN_Stop(&htim1, TIM_CHANNEL_2); // Phase B Low-Side OFF
HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_1); // Phase A High-Side OFF
HAL_TIMEx_PWMN_Stop(&htim1, TIM_CHANNEL_1); // Phase A Low-Side OFF
}
void BH_AL()
{
// This is step 4 of commutation
// Set all channels to 0 first
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 0);
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_2, 0);
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_3, 0);
// Enable TIM2 CH1 (Phase B High-Side)
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_2);
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_2, compareValue); // Phase B High-Side ON
// Enable TIM1 CH2N (Phase A Low-Side)
HAL_TIMEx_PWMN_Start(&htim1, TIM_CHANNEL_1);
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, compareValue); // Phase A Low-Side ON
// Disable other channels
HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_1); // Phase A High-Side OFF
HAL_TIMEx_PWMN_Stop(&htim1, TIM_CHANNEL_2); // Phase B Low-Side OFF
HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_3); // Phase C High-Side OFF
HAL_TIMEx_PWMN_Stop(&htim1, TIM_CHANNEL_3); // Phase C Low-Side OFF
}
void CH_AL()
{
// This is step 5 of commutation
// Set all channels to 0 first
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 0);
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_2, 0);
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_3, 0);
// Enable TIM3 CH1 (Phase C High-Side)
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_3);
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_3, compareValue); // Phase C High-Side ON
// Enable TIM1 CH2N (Phase A Low-Side)
HAL_TIMEx_PWMN_Start(&htim1, TIM_CHANNEL_1);
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, compareValue); // Phase A Low-Side ON
// Disable other channels
HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_1); // Phase A High-Side OFF
HAL_TIMEx_PWMN_Stop(&htim1, TIM_CHANNEL_3); // Phase C Low-Side OFF
HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_2); // Phase B High-Side OFF
HAL_TIMEx_PWMN_Stop(&htim1, TIM_CHANNEL_2); // Phase B Low-Side OFF
}
void CH_BL()
{
// This is step 6 of commutation
// Set all channels to 0 first
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 0);
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_2, 0);
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_3, 0);
// Enable TIM3 CH1 (Phase C High-Side)
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_3);
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_3, compareValue); // Phase C High-Side ON
// Enable TIM2 CH2N (Phase B Low-Side)
HAL_TIMEx_PWMN_Start(&htim1, TIM_CHANNEL_2);
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_2, compareValue); // Phase B Low-Side ON
// Disable other channels
HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_2); // Phase B High-Side OFF
HAL_TIMEx_PWMN_Stop(&htim1, TIM_CHANNEL_3); // Phase C Low-Side OFF
HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_1); // Phase A High-Side OFF
HAL_TIMEx_PWMN_Stop(&htim1, TIM_CHANNEL_1); // Phase A Low-Side OFF
}
/********************************* Commutation Step function End ****************************************************/
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
// if (isOpenLoop) return; // Ignore EXTI during open-loop startup
if(GPIO_Pin == PHASE_A_EXTI_Pin)
{
if(HAL_GPIO_ReadPin(PHASE_A_EXTI_GPIO_Port,PHASE_A_EXTI_Pin) == GPIO_PIN_SET)
{
// Rising Edge
CH_BL(); // Step 6
current_step = 6;
}
else
{
// Falling Edge
BH_CL(); // Step 3
current_step = 3;
}
}
else if(GPIO_Pin == PHASE_B_EXTI_Pin)
{
if(HAL_GPIO_ReadPin(PHASE_B_EXTI_GPIO_Port,PHASE_B_EXTI_Pin) == GPIO_PIN_SET)
{
// Rising Edge
AH_CL(); // Step 2
current_step = 2;
}
else
{
// Falling Edge
CH_AL(); // Step 5
current_step = 5;
}
}
else if(GPIO_Pin == PHASE_C_EXTI_Pin)
{
if(HAL_GPIO_ReadPin(PHASE_C_EXTI_GPIO_Port,PHASE_C_EXTI_Pin) == GPIO_PIN_SET)
{
// Rising Edge
BH_AL(); // Step4
current_step = 4;
}
else
{
// Falling Edge
AH_BL(); // Step 1
current_step = 1;
}
}
}
void openLoopCommute(uint8_t step)
{
// Set all channels to 0 before applying the new step
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 0);
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_2, 0);
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_3, 0);
switch (step)
{
case 1:
AH_BL();
break;
case 2:
AH_CL();
break;
case 3:
BH_CL();
break;
case 4:
BH_AL();
break;
case 5:
CH_AL();
break;
case 6:
CH_BL();
break;
case 7:
break;
}
// HAL_Delay(10);
}
/*---------------------------------------------------------------------------*/
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_TIM1_Init();
MX_TIM3_Init();
/* USER CODE BEGIN 2 */
HAL_TIM_IC_Start_IT(&htim3, TIM_CHANNEL_1);
//
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1);
HAL_TIMEx_PWMN_Start(&htim1, TIM_CHANNEL_1);
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_2);
HAL_TIMEx_PWMN_Start(&htim1, TIM_CHANNEL_2);
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_3);
HAL_TIMEx_PWMN_Start(&htim1, TIM_CHANNEL_3);
// uint32_t compareValue = 0;
int counter = 0;
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 0);
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_2, 0);
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_3, 0);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
/**/
if (newDataAvailable)
{
newDataAvailable = 0; // Reset the flag
// Map input PWM (0.998ms to 2ms) to TIM1 duty cycle (0 to 999)
if (usWidth >= 998 && usWidth <= 2000) {
compareValue = ((usWidth - 998) * 999) / (2000 - 998);
} else if (usWidth < 998) {
compareValue = 0;
} else {
compareValue = 999;
}
// __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, compareValue);
// __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_2, compareValue);
// __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_3, compareValue);
// AH_BL();
// HAL_Delay(1000);
// AH_CL();
// HAL_Delay(1000);
// openLoopCommute(counter + 1);
// counter = (counter + 1) % 6;
}
/**/
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 100;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 4;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV16;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief TIM1 Initialization Function
* @PAram None
* @retval None
*/
static void MX_TIM1_Init(void)
{
/* USER CODE BEGIN TIM1_Init 0 */
/* USER CODE END TIM1_Init 0 */
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
/* USER CODE BEGIN TIM1_Init 1 */
/* USER CODE END TIM1_Init 1 */
htim1.Instance = TIM1;
htim1.Init.Prescaler = 10-1;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 1000-1;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_LOW;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
{
Error_Handler();
}
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = 80;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM1_Init 2 */
/* USER CODE END TIM1_Init 2 */
HAL_TIM_MspPostInit(&htim1);
}
/**
* @brief TIM3 Initialization Function
* @PAram None
* @retval None
*/
static void MX_TIM3_Init(void)
{
/* USER CODE BEGIN TIM3_Init 0 */
/* USER CODE END TIM3_Init 0 */
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_IC_InitTypeDef sConfigIC = {0};
/* USER CODE BEGIN TIM3_Init 1 */
/* USER CODE END TIM3_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 250-1;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 1000-1;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_IC_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_BOTHEDGE;
sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
sConfigIC.ICFilter = 0;
if (HAL_TIM_IC_ConfigChannel(&htim3, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM3_Init 2 */
/* USER CODE END TIM3_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @PAram None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pins : PHASE_A_EXTI_Pin PHASE_B_EXTI_Pin PHASE_C_EXTI_Pin */
GPIO_InitStruct.Pin = PHASE_A_EXTI_Pin|PHASE_B_EXTI_Pin|PHASE_C_EXTI_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* EXTI interrupt init*/
HAL_NVIC_SetPriority(EXTI15_10_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(EXTI15_10_IRQn);
/* USER CODE BEGIN MX_GPIO_Init_2 */
// /*Configure GPIO pin : PA8 (TIM1_CH1) */
// GPIO_InitStruct.Pin = GPIO_PIN_8;
// GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
// GPIO_InitStruct.Pull = GPIO_PULLDOWN;
// GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
// GPIO_InitStruct.Alternate = GPIO_AF1_TIM1;
// HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @PAram file: pointer to the source file name
* @PAram line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
2024-08-29 02:59 AM
This is the extended explanation for the problem and above is the code which i have tried, due to messge limit i have extended this
I have tried to write code in stm32f411ceu6 (blackpill) for generating PWM pulse which will be given to my esc using ir2101. I am using stm32cubeMX for generating code. In stm32cubeMX i have initailized TIM 1 , CH1,CH2, CH3 with complementry mode, pin as Pulldowm, which will be given to three ir2101 HIN and LIN pin for turning on and off of n channel mosfet. The issue i am getting is in the code the TIM1 CH1 pin is pulled to high and after two step it should turn off the PWM but it generate dummy pulse which lead B phase mosfet to heat. when i set the dutycycle to 10 then CH1 duty cycle is 10 and CH1N is 90 but this is not turning mosfet correctly, I need is both CH1 and CH1N duty cycle should be 10.
2024-08-29 05:55 AM
> __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 0);
Do you ever set the value to something other than 0? I can't see any places where this is done. Setting CCR1 to 0 will output a DC signal, not a pulse.
If your period is 1000 and you want a 10% duty cycle, set CCR1 to 100.
2024-08-29 11:28 PM
Initially i am making 0 and then setting the value calculated from compareValue in it