2024-10-06 10:19 PM
I have an STM32F103C8T6 Blue Pill board, and I'm trying to get the RTC to function correctly when Vdd is removed. However, when I disconnect Vdd, the RTC doesn't operate as expected. Sometimes, when Vdd is supplied, the RTC starts counting from the time I disconnected Vdd, or it begins from an entirely different time. Additionally, I'm observing a voltage of 2.2V on Vdd when only Vbat is connected. Interestingly, the contents of the RTC backup registers are saved when only Vbat is supplied but the RTC doesn't work.
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <stdio.h>
#include <string.h>
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
RTC_TimeTypeDef Time = {0};
RTC_DateTypeDef Date = {0};
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
int _write(int file, char *ptr, int len)
{
int DataIdx;
for (DataIdx = 0; DataIdx < len; DataIdx++)
{
ITM_SendChar(*ptr++);
}
return len;
}
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
RTC_HandleTypeDef hrtc;
UART_HandleTypeDef huart1;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_RTC_Init(void);
static void MX_USART1_UART_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
static void SetTime()
{
RTC_TimeTypeDef sTime = {0};
RTC_DateTypeDef DateToUpdate = {0};
sTime.Hours = 0x23;
sTime.Minutes = 0x59;
sTime.Seconds = 0x50;
if (HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BCD) != HAL_OK)
{
Error_Handler();
}
DateToUpdate.WeekDay = RTC_WEEKDAY_WEDNESDAY;
DateToUpdate.Month = RTC_MONTH_OCTOBER;
DateToUpdate.Date = 0x2;
DateToUpdate.Year = 0x24;
if (HAL_RTC_SetDate(&hrtc, &DateToUpdate, RTC_FORMAT_BCD) != HAL_OK)
{
Error_Handler();
}
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
__HAL_RCC_BKP_CLK_ENABLE();
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_RTC_Init();
MX_USART1_UART_Init();
/* USER CODE BEGIN 2 */
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
// SET_BIT(RCC->APB1ENR, RCC_APB1ENR_PWREN);
char buff[200] = {0};
while (1)
{
HAL_RTC_GetTime(&hrtc, &Time, RTC_FORMAT_BIN);
HAL_RTC_GetDate(&hrtc, &Date, RTC_FORMAT_BIN);
snprintf(buff, 200, "%02d/%02d/%02d %02d:%02d:%02d\r\n", Date.Date,
Date.Month, Date.Year, Time.Hours, Time.Minutes, Time.Seconds);
HAL_UART_Transmit(&huart1, buff, strlen(buff), 100);
HAL_UART_Receive(&huart1, buff, 1, 1000);
if (buff[0] == 'A')
{
SetTime();
}
else if (buff[0] == 'B')
{
HAL_RTC_GetDate(&hrtc, &Date, RTC_FORMAT_BCD);
HAL_RTCEx_BKUPWrite(&hrtc, RTC_BKP_DR2, Date.WeekDay);
HAL_RTCEx_BKUPWrite(&hrtc, RTC_BKP_DR3, Date.Month);
HAL_RTCEx_BKUPWrite(&hrtc, RTC_BKP_DR4, Date.Date);
HAL_RTCEx_BKUPWrite(&hrtc, RTC_BKP_DR5, Date.Year);
HAL_Delay(100);
HAL_PWR_EnterSTANDBYMode();
}
// HAL_Delay(1000);
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_LSE;
RCC_OscInitStruct.LSEState = RCC_LSE_ON;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_RTC;
PeriphClkInit.RTCClockSelection = RCC_RTCCLKSOURCE_LSE;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief RTC Initialization Function
* @PAram None
* @retval None
*/
static void MX_RTC_Init(void)
{
/* USER CODE BEGIN RTC_Init 0 */
// #ifdef RTC_SET_VALUES
/* USER CODE END RTC_Init 0 */
RTC_TimeTypeDef sTime = {0};
RTC_DateTypeDef DateToUpdate = {0};
/* USER CODE BEGIN RTC_Init 1 */
/* USER CODE END RTC_Init 1 */
/** Initialize RTC Only
*/
hrtc.Instance = RTC;
hrtc.Init.AsynchPrediv = RTC_AUTO_1_SECOND;
hrtc.Init.OutPut = RTC_OUTPUTSOURCE_ALARM;
if (HAL_RTC_Init(&hrtc) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN Check_RTC_BKUP */
// HAL_RTCEx_BKUPRead(&hrtc, RTC_BKP_DR1);
// HAL_RTC_WaitForSynchro(&hrtc);
// #ifdef RTC_SET_VALUES
if (HAL_RTCEx_BKUPRead(&hrtc, RTC_BKP_DR1) != 0x32F2)
{
if (HAL_RTC_WaitForSynchro(&hrtc) != HAL_OK)
{
Error_Handler();
}
/* USER CODE END Check_RTC_BKUP */
/** Initialize RTC and set the Time and Date
*/
sTime.Hours = 0x23;
sTime.Minutes = 0x59;
sTime.Seconds = 0x50;
if (HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BCD) != HAL_OK)
{
Error_Handler();
}
DateToUpdate.WeekDay = RTC_WEEKDAY_WEDNESDAY;
DateToUpdate.Month = RTC_MONTH_OCTOBER;
DateToUpdate.Date = 0x2;
DateToUpdate.Year = 0x24;
if (HAL_RTC_SetDate(&hrtc, &DateToUpdate, RTC_FORMAT_BCD) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN RTC_Init 2 */
// #endif
HAL_RTCEx_BKUPWrite(&hrtc, RTC_BKP_DR1, 0x32F2);
}
else
{
DateToUpdate.WeekDay = HAL_RTCEx_BKUPRead(&hrtc, RTC_BKP_DR2);
DateToUpdate.Month = HAL_RTCEx_BKUPRead(&hrtc, RTC_BKP_DR3);
DateToUpdate.Date = HAL_RTCEx_BKUPRead(&hrtc, RTC_BKP_DR4);
DateToUpdate.Year = HAL_RTCEx_BKUPRead(&hrtc, RTC_BKP_DR5);
if (HAL_RTC_SetDate(&hrtc, &DateToUpdate, RTC_FORMAT_BCD) != HAL_OK)
{
Error_Handler();
}
}
/* USER CODE END RTC_Init 2 */
}
/**
* @brief USART1 Initialization Function
* @PAram None
* @retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 9600;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @PAram None
* @retval None
*/
static void MX_GPIO_Init(void)
{
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @PAram file: pointer to the source file name
* @PAram line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
2024-10-14 11:21 AM
Hello @AbhijithKannan ,
Check that the LSE is correctly configured and stable. Did you follow the RM0008 in "Battery backup domain" section?
Did you initialize properly the GPIOs?
2024-10-14 09:10 PM
Hi @Imen.D
I believe I have configured the LSE correctly. I've attached screenshots of my CubeMX configurations for your review. Since I don't have a coin cell available, I'm currently supplying Vbat with 3.2V from another Nucleo board, while the ST Blue Pill is powered via the STLink V2 programmer.
I’ve noticed that when Vbat is powered and I remove Vdd, the contents in the backup register remain intact when I reconnect Vdd. However, the RTC is not functioning properly.
Additionally, when Vbat is supplied, I measure 2.2V across Vdd. Is this expected behavior?
2024-10-15 08:17 AM
Please chek if the vbat power source is isolated. As per schematic there is a reverse biased diode, so the probability of vbat leaking to vdd is low.
2024-10-15 10:24 AM
Hi @Techn
I’m supplying power to both Vdd and Vbatt via jumper wires. To cut off power to Vdd, I simply disconnect all four wires from the ST-Link V2 programmer. This leaves Vbatt powered solely by the Nucleo board. I checked for continuity between Vdd and Vbatt with a multimeter and found none.
2024-10-15 08:37 PM
Have you selected RTC output on tamper pin or RTC output disabled? Then select No RTC output. Please share the ioc.
2024-10-16 04:41 AM - edited 2024-10-16 04:44 AM
I've attached the IOC file. The RTC is now working! I regenerated the code from CubeMX and haven’t made any changes since I last opened the project. I occasionally notice the RTC resetting, but I believe it's due to a loose jumper wire when I make adjustments to the board. Most of the time, the RTC functions correctly.
2024-10-16 05:14 AM - edited 2024-10-16 05:14 AM
But still I am getting that 2.2V across Vdd when only Vbat is supplied