2024-06-20 12:08 PM
Hey all,
I am using a B-L072Z-WLAN1 that talks to another of the same board using LoRa peer-to-peer. The board I am having issues with is supposed to receive how many pulses to send from the other board, then send them using pwm one-shot mode to PA0. Using a live watch expression on pulsesSent, I found that the pwm stops working after exactly 427 pulses. I am completely lost as to why this is happening. Any ideas?
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
* * This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "LoRa.h"
#include <stdbool.h>
#include <string.h>
#include <stdio.h>
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
RTC_HandleTypeDef hrtc;
SPI_HandleTypeDef hspi1;
TIM_HandleTypeDef htim2;
UART_HandleTypeDef huart2;
/* USER CODE BEGIN PV */
bool RxReady;
bool firstScan = true;
uint8_t longTermMemory[128];
uint8_t memoryCounter = 0;
uint8_t password[] = {"Renk"};
uint8_t RxBuffer[128] = {0};
uint8_t RxLength;
uint8_t RxPulseCount = 0;
uint8_t UART_Buffer[128];
uint8_t pulseComplete = 0;
uint32_t pulsesSent = 0;
uint32_t setPeriod = 0;
uint16_t pulsesToSend = 0;
uint16_t LoRa_status;
LoRa myLoRa;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_RTC_Init(void);
static void MX_SPI1_Init(void);
static void MX_USART2_UART_Init(void);
static void MX_TIM2_Init(void);
/* USER CODE BEGIN PFP */
void copyAndStoreRxData(void);
void LoRaLoadDefaultValues(LoRa *LoRaInstance);
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_RTC_Init();
MX_SPI1_Init();
MX_USART2_UART_Init();
MX_TIM2_Init();
/* USER CODE BEGIN 2 */
myLoRa = newLoRa();
LoRaLoadDefaultValues(&myLoRa);
LoRa_reset(&myLoRa);
//initialize LoRa. stay in loop until successful
do
{
LoRa_status = LoRa_init(&myLoRa);
HAL_Delay(100);
}while(LoRa_status != LORA_OK);
memset(RxBuffer, 0, sizeof(RxBuffer));//clear RxBuffer of any leftover information
LoRa_startReceiving(&myLoRa);//set LoRa module to continuous receive mode
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
//PROGRAM FLOW: receive data -> format & store data -> send pulse output -> repeat
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
//if the LoRa module is ready to receive data, then receive it.
if(RxReady == true)
{
RxLength = LoRa_receive(&myLoRa, RxBuffer, 128);
RxReady = false;
}
//if data has been received, execute a function which verifies and stores the data
if(RxLength>0) copyAndStoreRxData();
/*the number of pulse received is stored as an integer. the program adds the number of pulses received
*with each new rx. with each 100ms pulse output that the master MCU gives, the pulse count is
*incremented by 1 until zero. */
if((pulsesToSend>0) && (pulseComplete || firstScan)) //execute if there are pulses to send AND the PWM cycle is finished
{
if(htim2.Instance->CNT) htim2.Instance->CNT = 0; //clear counter register if not 0
htim2.Instance->CR1 |= TIM_CR1_CEN; //enable the timer
while(HAL_TIM_OnePulse_Start_IT(&htim2, TIM_CHANNEL_1) == HAL_BUSY);
pulseComplete--;
pulsesToSend--;
pulsesSent++;
firstScan = false;
}
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_LSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLLMUL_6;
RCC_OscInitStruct.PLL.PLLDIV = RCC_PLLDIV_3;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART2|RCC_PERIPHCLK_RTC;
PeriphClkInit.Usart2ClockSelection = RCC_USART2CLKSOURCE_PCLK1;
PeriphClkInit.RTCClockSelection = RCC_RTCCLKSOURCE_LSI;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief RTC Initialization Function
* @PAram None
* @retval None
*/
static void MX_RTC_Init(void)
{
/* USER CODE BEGIN RTC_Init 0 */
/* USER CODE END RTC_Init 0 */
RTC_TimeTypeDef sTime = {0};
RTC_DateTypeDef sDate = {0};
RTC_AlarmTypeDef sAlarm = {0};
/* USER CODE BEGIN RTC_Init 1 */
/* USER CODE END RTC_Init 1 */
/** Initialize RTC Only
*/
hrtc.Instance = RTC;
hrtc.Init.HourFormat = RTC_HOURFORMAT_24;
hrtc.Init.AsynchPrediv = 31;
hrtc.Init.SynchPrediv = 1023;
hrtc.Init.OutPut = RTC_OUTPUT_DISABLE;
hrtc.Init.OutPutRemap = RTC_OUTPUT_REMAP_NONE;
hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
if (HAL_RTC_Init(&hrtc) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN Check_RTC_BKUP */
/* USER CODE END Check_RTC_BKUP */
/** Initialize RTC and set the Time and Date
*/
sTime.Hours = 0;
sTime.Minutes = 0;
sTime.Seconds = 0;
sTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE;
sTime.StoreOperation = RTC_STOREOPERATION_RESET;
if (HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BIN) != HAL_OK)
{
Error_Handler();
}
sDate.WeekDay = RTC_WEEKDAY_MONDAY;
sDate.Month = RTC_MONTH_JANUARY;
sDate.Date = 1;
sDate.Year = 0;
if (HAL_RTC_SetDate(&hrtc, &sDate, RTC_FORMAT_BIN) != HAL_OK)
{
Error_Handler();
}
/** Enable the Alarm A
*/
sAlarm.AlarmTime.Hours = 0;
sAlarm.AlarmTime.Minutes = 0;
sAlarm.AlarmTime.Seconds = 0;
sAlarm.AlarmTime.SubSeconds = 0;
sAlarm.AlarmTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE;
sAlarm.AlarmTime.StoreOperation = RTC_STOREOPERATION_RESET;
sAlarm.AlarmMask = RTC_ALARMMASK_NONE;
sAlarm.AlarmSubSecondMask = RTC_ALARMSUBSECONDMASK_NONE;
sAlarm.AlarmDateWeekDaySel = RTC_ALARMDATEWEEKDAYSEL_DATE;
sAlarm.AlarmDateWeekDay = 1;
sAlarm.Alarm = RTC_ALARM_A;
if (HAL_RTC_SetAlarm_IT(&hrtc, &sAlarm, RTC_FORMAT_BIN) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN RTC_Init 2 */
/* USER CODE END RTC_Init 2 */
}
/**
* @brief SPI1 Initialization Function
* @PAram None
* @retval None
*/
static void MX_SPI1_Init(void)
{
/* USER CODE BEGIN SPI1_Init 0 */
/* USER CODE END SPI1_Init 0 */
/* USER CODE BEGIN SPI1_Init 1 */
/* USER CODE END SPI1_Init 1 */
/* SPI1 parameter configuration*/
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_2LINES;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 7;
if (HAL_SPI_Init(&hspi1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI1_Init 2 */
/* USER CODE END SPI1_Init 2 */
}
/**
* @brief TIM2 Initialization Function
* @PAram None
* @retval None
*/
static void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 63;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 49999;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_OnePulse_Init(&htim2, TIM_OPMODE_SINGLE) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 25000;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
setPeriod = htim2.Init.Period;
/* USER CODE END TIM2_Init 2 */
HAL_TIM_MspPostInit(&htim2);
}
/**
* @brief USART2 Initialization Function
* @PAram None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @PAram None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, PA15_RESERVED_Pin|PA12_RESERVED_Pin|PA1_RESERVED_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOC, PC1_RESERVED_Pin|PC0_RESERVED_Pin|PC2_RESERVED_Pin, GPIO_PIN_RESET);
/*Configure GPIO pins : PA15_RESERVED_Pin PA12_RESERVED_Pin PA1_RESERVED_Pin */
GPIO_InitStruct.Pin = PA15_RESERVED_Pin|PA12_RESERVED_Pin|PA1_RESERVED_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : PB4_RESERVED_Pin PB6 PB1_RESERVED_Pin PB0_RESERVED_Pin */
GPIO_InitStruct.Pin = PB4_RESERVED_Pin|GPIO_PIN_6|PB1_RESERVED_Pin|PB0_RESERVED_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : PC13_RESERVED_Pin */
GPIO_InitStruct.Pin = PC13_RESERVED_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(PC13_RESERVED_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : PC1_RESERVED_Pin PC0_RESERVED_Pin PC2_RESERVED_Pin */
GPIO_InitStruct.Pin = PC1_RESERVED_Pin|PC0_RESERVED_Pin|PC2_RESERVED_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/* EXTI interrupt init*/
HAL_NVIC_SetPriority(EXTI0_1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(EXTI0_1_IRQn);
HAL_NVIC_SetPriority(EXTI4_15_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(EXTI4_15_IRQn);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
void LoRaLoadDefaultValues(LoRa *LoRaInstance)
{
LoRaInstance->CS_port = NSS_GPIO_Port;
LoRaInstance->CS_pin = NSS_Pin;
LoRaInstance->reset_port = RESET_GPIO_Port;
LoRaInstance->reset_pin = RESET_Pin;
LoRaInstance->DIO0_port = DIO0_GPIO_Port;
LoRaInstance->DIO0_pin = DIO0_Pin;
LoRaInstance->hSPIx = &hspi1;
LoRaInstance->frequency = 902; // default = 433 MHz
LoRaInstance->spredingFactor = SF_7; // default = SF_7
LoRaInstance->bandWidth = BW_125KHz; // default = BW_125KHz
LoRaInstance->crcRate = CR_4_5; // default = CR_4_5
LoRaInstance->power = POWER_20db;//POWER_17db; // default = 20db
LoRaInstance->overCurrentProtection = 100;//100; // default = 100 mA
LoRaInstance->preamble = 8; // default = 8;
}
//take a number in character form and convert it to an integer.
uint8_t eightBitConvertCharToInt(uint8_t inputChar)
{
return inputChar - '0';
}
void copyAndStoreRxData(void)
{
uint8_t handshakeCheck[5];
uint8_t i = 0;
RxPulseCount = 0;
//these next 4 lines are to make sure that the data received is from us and not some other LoRa-based device.
for(i = 0; i < (strlen(RxBuffer)-1); i++) (handshakeCheck[i] = RxBuffer[i]);//store the handshake
handshakeCheck[4] = '\0'; //terminate the string
if(strcmp((char *)handshakeCheck, (char *)password) == 0) //check that the handshake matches the password
RxPulseCount = eightBitConvertCharToInt(RxBuffer[4]);//if the handshake is correct, store the pulse data
pulsesToSend += (uint16_t) RxPulseCount; //add the number of received pulses to memory
memset(RxBuffer, 0, sizeof(RxBuffer)); //clear the RX buffer
RxLength = 0;
}
/*the best practice for interrupts is to have them only toggle flags. any heavy lifting should be done in
*the main() to keep the program flow consistent and avoid having an output change mid-routine.
*/
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
/*
* The SoC on the development board is 2 microcontrollers in 1; the SX1276 (which is the LoRa driver) and
* the STM32L072Z, which is the main controller. The DIO0 (an output pin from the SX1276) has an internal
* connection with GPIOB pin 6. When the LoRa module has received data, the SX1276 pulls that pin HIGH,
* which triggers this interrupt.
*/
if(GPIO_Pin == DIO0_Pin)
RxReady = 1;
}
//this function keeps track of the number of pulses sent.
void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim)
{
if(htim->Instance == TIM2) pulseComplete++;
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @PAram file: pointer to the source file name
* @PAram line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
2024-08-01 05:49 AM
Hello @JustSomeGuy sorry for the delayed answer,
Ensure that the HAL_TIM_PWM_PulseFinishedCallback function is correctly incrementing pulseComplete and that this value is being used correctly in the main loop.
Have you gotten any further debugging the issue?
To give better visibility on the answered topics, please click on Accept as Solution on the reply which solved your issue or answered your question.