cancel
Showing results for 
Search instead for 
Did you mean: 

Hi, I am using STM32L4P5 discovery kit to find out current consumption in different ADC configuration, i.e 12 bit, 14 bit & 16 bit resolution achieved using oversampling. May I know why the current consumption is same in different ADC configuration

Shru2
Associate II

0693W00000WJhn2QAD.pngAbove table shows the observations made. I would like to know if there is any internal architecture of MCU which is governing same current consumption.

I have attached code snippet for 14 bit configuration.

References:

User Manual UM2651:

DataSheet: STM32L4P5xx

Reference Manual : RM0432

/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
 
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <stdio.h>
/* USER CODE END Includes */
 
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
 
/* USER CODE END PTD */
 
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
 
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
 
/* USER CODE END PM */
 
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
 
UART_HandleTypeDef huart2;
 
/* USER CODE BEGIN PV */
char value[50];
uint16_t D_val;
/* USER CODE END PV */
 
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_ADC1_Init(void);
static void MX_USART2_UART_Init(void);
/* USER CODE BEGIN PFP */
 
/* USER CODE END PFP */
 
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
 
/* USER CODE END 0 */
 
/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */
 
  /* USER CODE END 1 */
 
  /* MCU Configuration--------------------------------------------------------*/
 
  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();
 
  /* USER CODE BEGIN Init */
 
  /* USER CODE END Init */
 
  /* Configure the system clock */
  SystemClock_Config();
 
  /* USER CODE BEGIN SysInit */
 
  /* USER CODE END SysInit */
 
  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_ADC1_Init();
  MX_USART2_UART_Init();
  /* USER CODE BEGIN 2 */
 
  /* USER CODE END 2 */
 
  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */
 
    /* USER CODE BEGIN 3 */
	      HAL_ADC_Start(&hadc1);
	 	  HAL_ADC_PollForConversion(&hadc1, HAL_MAX_DELAY);
	 	  D_val = HAL_ADC_GetValue(&hadc1);
 
	 	  sprintf(value,"%hu\r\n",D_val);
	 	  HAL_UART_Transmit(&huart2, (uint8_t*)value, sizeof(value), 500);
	      HAL_Delay(1000);
  }
  /* USER CODE END 3 */
}
 
/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
 
  /** Configure the main internal regulator output voltage
  */
  if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK)
  {
    Error_Handler();
  }
 
  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_MSI;
  RCC_OscInitStruct.MSIState = RCC_MSI_ON;
  RCC_OscInitStruct.MSICalibrationValue = 0;
  RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_6;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_MSI;
  RCC_OscInitStruct.PLL.PLLM = 1;
  RCC_OscInitStruct.PLL.PLLN = 24;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
  RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
 
  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV2;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
 
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
  {
    Error_Handler();
  }
}
 
/**
  * @brief ADC1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_ADC1_Init(void)
{
 
  /* USER CODE BEGIN ADC1_Init 0 */
 
  /* USER CODE END ADC1_Init 0 */
 
  ADC_MultiModeTypeDef multimode = {0};
  ADC_ChannelConfTypeDef sConfig = {0};
 
  /* USER CODE BEGIN ADC1_Init 1 */
 
  /* USER CODE END ADC1_Init 1 */
 
  /** Common config
  */
  hadc1.Instance = ADC1;
  hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
  hadc1.Init.Resolution = ADC_RESOLUTION_12B;
  hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
  hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  hadc1.Init.LowPowerAutoWait = DISABLE;
  hadc1.Init.ContinuousConvMode = DISABLE;
  hadc1.Init.NbrOfConversion = 1;
  hadc1.Init.DiscontinuousConvMode = DISABLE;
  hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  hadc1.Init.DMAContinuousRequests = DISABLE;
  hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED;
  hadc1.Init.OversamplingMode = ENABLE;
  hadc1.Init.Oversampling.Ratio = ADC_OVERSAMPLING_RATIO_16;
  hadc1.Init.Oversampling.RightBitShift = ADC_RIGHTBITSHIFT_2;
  hadc1.Init.Oversampling.TriggeredMode = ADC_TRIGGEREDMODE_SINGLE_TRIGGER;
  hadc1.Init.Oversampling.OversamplingStopReset = ADC_REGOVERSAMPLING_CONTINUED_MODE;
  if (HAL_ADC_Init(&hadc1) != HAL_OK)
  {
    Error_Handler();
  }
 
  /** Configure the ADC multi-mode
  */
  multimode.Mode = ADC_MODE_INDEPENDENT;
  if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK)
  {
    Error_Handler();
  }
 
  /** Configure Regular Channel
  */
  sConfig.Channel = ADC_CHANNEL_2;
  sConfig.Rank = ADC_REGULAR_RANK_1;
  sConfig.SamplingTime = ADC_SAMPLETIME_2CYCLES_5;
  sConfig.SingleDiff = ADC_SINGLE_ENDED;
  sConfig.OffsetNumber = ADC_OFFSET_NONE;
  sConfig.Offset = 0;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN ADC1_Init 2 */
 
  /* USER CODE END ADC1_Init 2 */
 
}
 
/**
  * @brief USART2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART2_UART_Init(void)
{
 
  /* USER CODE BEGIN USART2_Init 0 */
 
  /* USER CODE END USART2_Init 0 */
 
  /* USER CODE BEGIN USART2_Init 1 */
 
  /* USER CODE END USART2_Init 1 */
  huart2.Instance = USART2;
  huart2.Init.BaudRate = 115200;
  huart2.Init.WordLength = UART_WORDLENGTH_8B;
  huart2.Init.StopBits = UART_STOPBITS_1;
  huart2.Init.Parity = UART_PARITY_NONE;
  huart2.Init.Mode = UART_MODE_TX_RX;
  huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  huart2.Init.ClockPrescaler = UART_PRESCALER_DIV1;
  huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  if (HAL_UART_Init(&huart2) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_SetTxFifoThreshold(&huart2, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_SetRxFifoThreshold(&huart2, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_DisableFifoMode(&huart2) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART2_Init 2 */
 
  /* USER CODE END USART2_Init 2 */
 
}
 
/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
 
  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
 
}
 
/* USER CODE BEGIN 4 */
 
/* USER CODE END 4 */
 
/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}
 
#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

5 REPLIES 5

> HAL_Delay(1000);

This results in effective sampling rates of 1Hz to 256Hz in your case. At these rates the difference will be entirely negligible and dominated by the VDDA overall consumption and leakage

JW

Thank you.

Can you elaborate more on effect of current consumption on different ADC configuration (12 bit, 14 bit & 16 bit achieved by oversampling) ??

S.Ma
Principal

Well if you take 2 samples and make an average to get one more bit, the adc current remains constant. The current over time would be a better measurement unit....

Sem A.
Associate III

This forum thread was marked by the moderator as needing a little more investigation, so a Support case was created in your name and will be handled off-line. Should anyone have any related questions, please feel free to open a Support case directly at your myST portal: https://community.st.com/s/onlinesupport

raptorhal2
Lead

The ADC is using the same hardware therefore the same current to sample each of the 3 configurations. It just takes longer for 14 and 16 bit resolutions.

Edit: Table 77 in the data sheet make no mention of current for different oversampling resolutions. If your question is derived from Table 78 Maximum ADC Rain, please read AN2834 "How To Get The Best ADC Accuracy in STM32 Micros" for understanding.