2022-09-05 04:25 AM
I am using triple simultaneuos conversion ADC (2 conversions for each) with DMA (circular):
static void MX_ADC1_Init(void)
{
ADC_MultiModeTypeDef multimode = {0};
ADC_ChannelConfTypeDef sConfig = {0};
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = ENABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T8_TRGO;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 2;
hadc1.Init.DMAContinuousRequests = ENABLE;
hadc1.Init.EOCSelection = ADC_EOC_SEQ_CONV;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure the ADC multi-mode
*/
multimode.Mode = ADC_TRIPLEMODE_REGSIMULT;
multimode.DMAAccessMode = ADC_DMAACCESSMODE_1;
multimode.TwoSamplingDelay = ADC_TWOSAMPLINGDELAY_5CYCLES;
if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_12;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_28CYCLES;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_7;
sConfig.Rank = 2;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief ADC2 Initialization Function
* @param None
* @retval None
*/
static void MX_ADC2_Init(void)
{
ADC_ChannelConfTypeDef sConfig = {0};
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc2.Instance = ADC2;
hadc2.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
hadc2.Init.Resolution = ADC_RESOLUTION_12B;
hadc2.Init.ScanConvMode = ENABLE;
hadc2.Init.ContinuousConvMode = DISABLE;
hadc2.Init.DiscontinuousConvMode = DISABLE;
hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc2.Init.NbrOfConversion = 2;
hadc2.Init.DMAContinuousRequests = DISABLE;
hadc2.Init.EOCSelection = ADC_EOC_SEQ_CONV;
if (HAL_ADC_Init(&hadc2) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_11;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_28CYCLES;
if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_14;
sConfig.Rank = 2;
if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief ADC3 Initialization Function
* @param None
* @retval None
*/
static void MX_ADC3_Init(void)
{
ADC_ChannelConfTypeDef sConfig = {0};
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc3.Instance = ADC3;
hadc3.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
hadc3.Init.Resolution = ADC_RESOLUTION_12B;
hadc3.Init.ScanConvMode = ENABLE;
hadc3.Init.ContinuousConvMode = DISABLE;
hadc3.Init.DiscontinuousConvMode = DISABLE;
hadc3.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc3.Init.NbrOfConversion = 2;
hadc3.Init.DMAContinuousRequests = DISABLE;
hadc3.Init.EOCSelection = ADC_EOC_SEQ_CONV;
if (HAL_ADC_Init(&hadc3) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_10;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_28CYCLES;
if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_13;
sConfig.Rank = 2;
if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK)
{
Error_Handler();
}
}
My issue is with the channel 13 of ADC3 (PC3) - it's measuring a simple voltage divider:
Even after removing R2 and C2 the multimieter and ADC both show around 3.2V (seems internally pulled-up). When i, for example, changed pin mode to AF_OD or OUTPUT_OD the voltage was 0,6-0,8V. But if i switch back to analog the voltage goes to 3.2 no matter what. I soldered 6k8 resistor in the place of C2 to create a stronger pull-down, but that didn't change a thing...
Any ideas on what might be an issue?
Solved! Go to Solution.
2022-09-05 07:54 AM
maybe the chip is sick , by static discharge on this pin ... ? (shorted protection diode)
can you try another chip ?
or use other channel/pin for input , which is not already damaged , for a test ?
2022-09-05 07:54 AM
maybe the chip is sick , by static discharge on this pin ... ? (shorted protection diode)
can you try another chip ?
or use other channel/pin for input , which is not already damaged , for a test ?
2022-09-22 03:15 AM
Sorry for the long time to respond, but i went with the same conclusion and switched the whole MCU with a fresh one. There was a floating ground caused by a missing 0R resistor connecting MCU ground with the one it was measuring. Thank you for the fast response and again sorry for asnwering back after so long. Have a good day!