cancel
Showing results for 
Search instead for 
Did you mean: 

Is it possible to use VL53L0x without X-NUCLEO-53L0A1 extension board, directly connecting to my F302R8 board via I2C? HAL functions(HAL_I2C_Master_Transmit or HAL_I2C_Mem_Write) don't work and all i found is device address 0x52.

BTopb.1
Associate

0693W00000BZq6tQAD.jpgMy code and console are as presented below. Values are on the console are fixed, they don't change even if i move an object in front of the sensor. Also i dont understand what should i put in "index" byte that is shown in data sheet.

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include <string.h>
#include <stdio.h>
 
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
 
/* USER CODE END Includes */
 
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
 
/* USER CODE END PTD */
 
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
 
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
 
/* USER CODE END PM */
 
/* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c1;
 
UART_HandleTypeDef huart2;
 
/* USER CODE BEGIN PV */
static const uint8_t VL53L0_I2C_ADDR = 0x52;
/* USER CODE END PV */
 
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_I2C1_Init(void);
static void MX_USART2_UART_Init(void);
/* USER CODE BEGIN PFP */
 
/* USER CODE END PFP */
 
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
 
/* USER CODE END 0 */
 
/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */
	 HAL_StatusTypeDef ret;
	 uint8_t buf[12];
	 uint16_t distance;
  /* USER CODE END 1 */
 
  /* MCU Configuration--------------------------------------------------------*/
 
  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();
 
  /* USER CODE BEGIN Init */
 
  /* USER CODE END Init */
 
  /* Configure the system clock */
  SystemClock_Config();
 
  /* USER CODE BEGIN SysInit */
 
  /* USER CODE END SysInit */
 
  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_I2C1_Init();
  MX_USART2_UART_Init();
  /* USER CODE BEGIN 2 */
 
  /* USER CODE END 2 */
 
  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */
	  	  ret = HAL_I2C_IsDeviceReady(&hi2c1, VL53L0_I2C_ADDR, 1, HAL_MAX_DELAY);
	  	  if ( ret != HAL_OK ){
	  		  strcpy((char*)buf,"Error adr\r\n");
	  	  } else {
	  		  ret = HAL_I2C_Master_Transmit(&hi2c1, VL53L0_I2C_ADDR, buf, 1, HAL_MAX_DELAY);
	  //		  ret = HAL_I2C_Mem_Write(&hi2c1, VL53L0X, reg, 1, buf, 1, HAL_MAX_DELAY);
	  	    if ( ret != HAL_OK ) {
	  	    	strcpy((char*)buf,"Error tx\r\n");
	  	    } else {
	  	    	ret = HAL_I2C_Master_Receive(&hi2c1, VL53L0_I2C_ADDR|0x01, buf, 1, HAL_MAX_DELAY);
	  //	    	ret = HAL_I2C_Mem_Read(&hi2c1, VL53L0X, reg, 1, buf, 1, HAL_MAX_DELAY);
	  	      if ( ret != HAL_OK ) {
	  	    	  strcpy((char*)buf,"Error rx\r\n");
	  	      } else {
	  	    	  distance = buf[0];
	  	    	  sprintf((char*)buf,"%u \r\n",(unsigned int)distance);
	  	      }
	  	    }
	  	  }
	  	        // Send out buffer (distance or error message)
	  	    		HAL_Delay(500);
	  	    		printf("Distance=%u\n",distance);
	  	    		HAL_UART_Transmit(&huart2, buf, strlen((char*)buf), HAL_MAX_DELAY);
    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}
 
/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
 
  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
 
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
  {
    Error_Handler();
  }
  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_I2C1;
  PeriphClkInit.I2c1ClockSelection = RCC_I2C1CLKSOURCE_HSI;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  {
    Error_Handler();
  }
}
 
/**
  * @brief I2C1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_I2C1_Init(void)
{
 
  /* USER CODE BEGIN I2C1_Init 0 */
 
  /* USER CODE END I2C1_Init 0 */
 
  /* USER CODE BEGIN I2C1_Init 1 */
 
  /* USER CODE END I2C1_Init 1 */
  hi2c1.Instance = I2C1;
  hi2c1.Init.Timing = 0x2000090E;
  hi2c1.Init.OwnAddress1 = 0;
  hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  hi2c1.Init.OwnAddress2 = 0;
  hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
  hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  if (HAL_I2C_Init(&hi2c1) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure Analogue filter
  */
  if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure Digital filter
  */
  if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN I2C1_Init 2 */
 
  /* USER CODE END I2C1_Init 2 */
 
}
 
/**
  * @brief USART2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART2_UART_Init(void)
{
 
  /* USER CODE BEGIN USART2_Init 0 */
 
  /* USER CODE END USART2_Init 0 */
 
  /* USER CODE BEGIN USART2_Init 1 */
 
  /* USER CODE END USART2_Init 1 */
  huart2.Instance = USART2;
  huart2.Init.BaudRate = 115200;
  huart2.Init.WordLength = UART_WORDLENGTH_8B;
  huart2.Init.StopBits = UART_STOPBITS_1;
  huart2.Init.Parity = UART_PARITY_NONE;
  huart2.Init.Mode = UART_MODE_TX_RX;
  huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  if (HAL_UART_Init(&huart2) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART2_Init 2 */
 
  /* USER CODE END USART2_Init 2 */
 
}
 
/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
 
  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();
 
}
 
/* USER CODE BEGIN 4 */
 
/* USER CODE END 4 */
 
/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}
 
#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

0693W00000BZpRMQA1.jpg

1 ACCEPTED SOLUTION

Accepted Solutions
John E KVAM
ST Employee

It is quite possible to connect the satellite board up to any STM32 - or in fact, any MCU or CPU that has an I2C interface.

But the problem is that you are talking to a very complex sensor.

It's so complex that we don't give you the register map. I'm not going to tell you that you could not write your own code, but if you did, it would take so much work that you'd end up hating ST for the rest of your life.

So, download the API. It's free from the ST web site.

STSW-IMG005

VL53L0X API (Application Programming Interface and documentation)

There is a user manual in there.

And it will only take you a few calls to get it running.

But there is one trick.

The API ends with calls like RdByte, and WrWord.

So you get the pleasure of connecting these calls to the MCU's calls (like HAL_I2C_Master_Transmit).

You do this by re-writing the platform.c layer.

Or you can search GitHub and just download it.

  • john

Our community relies on fruitful exchanges and good quality content. You can thank and reward helpful and positive contributions by marking them as 'Accept as Solution'. When marking a solution, make sure it answers your original question or issue that you raised.

ST Employees that act as moderators have the right to accept the solution, judging by their expertise. This helps other community members identify useful discussions and refrain from raising the same question. If you notice any false behavior or abuse of the action, do not hesitate to 'Report Inappropriate Content'

View solution in original post

2 REPLIES 2
John E KVAM
ST Employee

It is quite possible to connect the satellite board up to any STM32 - or in fact, any MCU or CPU that has an I2C interface.

But the problem is that you are talking to a very complex sensor.

It's so complex that we don't give you the register map. I'm not going to tell you that you could not write your own code, but if you did, it would take so much work that you'd end up hating ST for the rest of your life.

So, download the API. It's free from the ST web site.

STSW-IMG005

VL53L0X API (Application Programming Interface and documentation)

There is a user manual in there.

And it will only take you a few calls to get it running.

But there is one trick.

The API ends with calls like RdByte, and WrWord.

So you get the pleasure of connecting these calls to the MCU's calls (like HAL_I2C_Master_Transmit).

You do this by re-writing the platform.c layer.

Or you can search GitHub and just download it.

  • john

Our community relies on fruitful exchanges and good quality content. You can thank and reward helpful and positive contributions by marking them as 'Accept as Solution'. When marking a solution, make sure it answers your original question or issue that you raised.

ST Employees that act as moderators have the right to accept the solution, judging by their expertise. This helps other community members identify useful discussions and refrain from raising the same question. If you notice any false behavior or abuse of the action, do not hesitate to 'Report Inappropriate Content'
John E KVAM
ST Employee

or you can use the platform.c file here.


Our community relies on fruitful exchanges and good quality content. You can thank and reward helpful and positive contributions by marking them as 'Accept as Solution'. When marking a solution, make sure it answers your original question or issue that you raised.

ST Employees that act as moderators have the right to accept the solution, judging by their expertise. This helps other community members identify useful discussions and refrain from raising the same question. If you notice any false behavior or abuse of the action, do not hesitate to 'Report Inappropriate Content'