cancel
Showing results for 
Search instead for 
Did you mean: 

Issues with FM24CLXX_WriteData function in STM32 project

VThuong99
Visitor

I have the following function to write data to the FM24CL64 memory:

 

void FM24CLXX_WriteData(uint16_t memAddr, uint8_t *data, uint16_t size) {
    uint8_t memAddrData[2] = { (uint8_t)(memAddr >> 8), (uint8_t)(memAddr & 0xFF) };
    HAL_StatusTypeDef status = HAL_I2C_Mem_Write(&hi2c1, FM24CLXX_I2C_ADDR, memAddrData[0], I2C_MEMADD_SIZE_8BIT, data, size, 100);

    if (status != HAL_OK) {
        Error_Handler();
    }
}

 

 

Symptoms:

  • The write operation fails, but the HAL_StatusTypeDef status returns a code that doesn't indicate exactly where the issue is.
  • I have verified that the I2C address FM24CLXX_I2C_ADDR = 0xA0 is correct.
  • The Error_Handler() function is being triggered, but I don't know exactly why.

Possible Causes:

  • There could be an issue with how the I2C command is sent.
  • Maybe the address or size format isn't compatible with the memory or STM32 I2C configuration.

Request:

  • Anyone with experience in using STM32 with I2C and FM24CLXX memory, could you please help me identify what could be wrong?
  • Suggestions for debugging or best practices when working with I2C memory like the FM24CL64 would be appreciated.

Full code:

This is my full code, I using stm32f405 OpenX05R-C board.

 

#include "main.h"
#include "cmsis_os.h"

#include <stdio.h>
#include "backup_sram.h"
#include "fm24clxx.h"

#define Avg_slope (2.5F)
#define V_25  (0.76F)

osThreadId_t Task1Handle;
osThreadId_t Task2Handle;
osThreadId_t Task3Handle;

osMutexId_t sharedMutex;

ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;

I2C_HandleTypeDef hi2c1;

UART_HandleTypeDef huart2;

// Printf with USART
int _write(int file, char *data, int len) {
    HAL_UART_Transmit(&huart2, (uint8_t*)data, len, HAL_MAX_DELAY);
    return len;
}

uint32_t temperature_value;
volatile uint8_t button_pressed = 0;

#define DEBOUNCE_DELAY 50
#define STABLE_THRESHOLD 4

int is_button_pressed() {
    uint8_t counter = 0;
    uint8_t i;
    uint8_t button_input;

    button_input = HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_1);
    if (button_input != GPIO_PIN_RESET) {
        return 0;
    }

    for (i = 0; i < 10; i++) {
        osDelay(5);
        button_input = HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_1);
        if (button_input == GPIO_PIN_SET) {
            counter = 0;
        } else {
            counter++;
        }
        if (counter >= STABLE_THRESHOLD) {
            return 1;
        }
    }

    return 0;
}
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc) {
    if (hadc->Instance == ADC1) {
//        float value = HAL_ADC_GetValue(&hadc1);
    	float value = temperature_value;
        float V_sense = (value * 3.0f) / 4095.0f;
        temperature_value = (uint32_t)((V_sense  - V_25) / Avg_slope + 25.0f);
        printf("ADC value: %d, Temperature: %lu\r\n", (int)V_sense, temperature_value);

        BKPSRAM_Write(0x00, temperature_value);
        HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_1);

    }
}

void Task1_Blink_LED(void *argument) {
    while (1) {
        HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_0);
        osDelay(1000);
    }
}
void Task2_Read_Temperature(void *argument) {
    while(1){
        HAL_ADC_Start_DMA(&hadc1, &temperature_value, 1);
    	osDelay(5000);
        uint32_t temp_from_sram = BKPSRAM_Read(0x00);
        printf("Temp from Backup SRAM: %lu\r\n", temp_from_sram);
//        HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_1);
    }
//    while (1) {
//        HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_1);
//        osDelay(1000);
//    }
}

void Task3_Button_Check(void *argument) {
    static uint8_t button_stable = 0;

    while(1){
    	printf("t3\r\n");
        if (is_button_pressed()) {
        	printf("0.\r\n");
            if (!button_stable) {
                button_stable = 1;

                if (!button_pressed) {
                    button_pressed = 1;

                    uint32_t temperature;
                    printf("1.\r\n");
		    temperature = BKPSRAM_Read(0x00);
		    printf("2.%lu\r\n", temperature);

		    FM24CLXX_WriteData(0x0000, (uint8_t*)&temperature, sizeof(temperature));

		    printf("Button Pressed, Data written to FM24CLXX: %lu\r\n", temperature);

		    uint32_t read_temp;
		    FM24CLXX_ReadData(0x0000, (uint8_t*)&read_temp, sizeof(read_temp));

		    printf("Data read from FM24CLXX: %lu\r\n", read_temp);

		    HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_2);
				}
			}
		} else {
			if (button_stable) {
				button_stable = 0;
				button_pressed = 0;
			}
		}

		osDelay(10);
	}
}


void RTOS_Tasks_Init() {
    osThreadAttr_t task1_attr = {.name = "Task1", .priority = osPriorityNormal, .stack_size = 128 * 4};
    osThreadAttr_t task2_attr = {.name = "Task2", .priority = osPriorityNormal, .stack_size = 128 * 4};
    osThreadAttr_t task3_attr = {.name = "Task3", .priority = osPriorityHigh, .stack_size = 128 * 4};

    Task1Handle = osThreadNew(Task1_Blink_LED, NULL, &task1_attr);
    Task2Handle = osThreadNew(Task2_Read_Temperature, NULL, &task2_attr);
    Task3Handle = osThreadNew(Task3_Button_Check, NULL, &task3_attr);
}
/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC1_Init(void);
static void MX_I2C1_Init(void);
static void MX_USART2_UART_Init(void);
int main(void)
{
  HAL_Init();

  SystemClock_Config();

  MX_GPIO_Init();
  MX_DMA_Init();
  MX_ADC1_Init();
  MX_I2C1_Init();
  MX_USART2_UART_Init();
  BKPSRAM_Init();

  sharedMutex = osMutexNew(NULL);

  osKernelInitialize();
  RTOS_Tasks_Init();
  osKernelStart();



  while (1){
  }

}
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
  {
    Error_Handler();
  }
}

static void MX_ADC1_Init(void)
{

  /* USER CODE BEGIN ADC1_Init 0 */

  /* USER CODE END ADC1_Init 0 */

  ADC_ChannelConfTypeDef sConfig = {0};

  /* USER CODE BEGIN ADC1_Init 1 */

  /* USER CODE END ADC1_Init 1 */

  /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
  */
  hadc1.Instance = ADC1;
  hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
  hadc1.Init.Resolution = ADC_RESOLUTION_12B;
  hadc1.Init.ScanConvMode = ENABLE;
  hadc1.Init.ContinuousConvMode = DISABLE;
  hadc1.Init.DiscontinuousConvMode = DISABLE;
  hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc1.Init.NbrOfConversion = 2;
  hadc1.Init.DMAContinuousRequests = DISABLE;
  hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  if (HAL_ADC_Init(&hadc1) != HAL_OK)
  {
    Error_Handler();
  }

  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  */
  sConfig.Channel = ADC_CHANNEL_TEMPSENSOR;
  sConfig.Rank = 1;
  sConfig.SamplingTime = ADC_SAMPLETIME_144CYCLES;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }

  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  */
  sConfig.Rank = 2;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN ADC1_Init 2 */

  /* USER CODE END ADC1_Init 2 */

}

static void MX_I2C1_Init(void)
{

  /* USER CODE BEGIN I2C1_Init 0 */

  /* USER CODE END I2C1_Init 0 */

  /* USER CODE BEGIN I2C1_Init 1 */

  /* USER CODE END I2C1_Init 1 */
  hi2c1.Instance = I2C1;
  hi2c1.Init.ClockSpeed = 100000;
  hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
  hi2c1.Init.OwnAddress1 = 0;
  hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  hi2c1.Init.OwnAddress2 = 0;
  hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  if (HAL_I2C_Init(&hi2c1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN I2C1_Init 2 */

  /* USER CODE END I2C1_Init 2 */

}

/**
  * @brief USART2 Initialization Function
  * @PAram None
  * @retval None
  */
static void MX_USART2_UART_Init(void)
{

  /* USER CODE BEGIN USART2_Init 0 */

  /* USER CODE END USART2_Init 0 */

  /* USER CODE BEGIN USART2_Init 1 */

  /* USER CODE END USART2_Init 1 */
  huart2.Instance = USART2;
  huart2.Init.BaudRate = 115200;
  huart2.Init.WordLength = UART_WORDLENGTH_8B;
  huart2.Init.StopBits = UART_STOPBITS_1;
  huart2.Init.Parity = UART_PARITY_NONE;
  huart2.Init.Mode = UART_MODE_TX_RX;
  huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_UART_Init(&huart2) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART2_Init 2 */

  /* USER CODE END USART2_Init 2 */

}

/**
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void)
{

  /* DMA controller clock enable */
  __HAL_RCC_DMA2_CLK_ENABLE();

  /* DMA interrupt init */
  /* DMA2_Stream0_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 5, 0);
  HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn);

}

/**
  * @brief GPIO Initialization Function
  * @PAram None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOH_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOB, led0_Pin|led1_Pin|led2_Pin|led3_Pin, GPIO_PIN_RESET);

  /*Configure GPIO pin : PA1 */
  GPIO_InitStruct.Pin = GPIO_PIN_1;
  GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

  /*Configure GPIO pins : led0_Pin led1_Pin led2_Pin led3_Pin */
  GPIO_InitStruct.Pin = led0_Pin|led1_Pin|led2_Pin|led3_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

  /* EXTI interrupt init*/
  HAL_NVIC_SetPriority(EXTI1_IRQn, 5, 0);
  HAL_NVIC_EnableIRQ(EXTI1_IRQn);

/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}



/* USER CODE END 4 */



/**
  * @brief  Period elapsed callback in non blocking mode
  * @note   This function is called  when TIM6 interrupt took place, inside
  * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
  * a global variable "uwTick" used as application time base.
  * @PAram  htim : TIM handle
  * @retval None
  */
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
  /* USER CODE BEGIN Callback 0 */

  /* USER CODE END Callback 0 */
  if (htim->Instance == TIM6) {
    HAL_IncTick();
  }
  /* USER CODE BEGIN Callback 1 */

  /* USER CODE END Callback 1 */
}

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @PAram  file: pointer to the source file name
  * @PAram  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

 

0 REPLIES 0