cancel
Showing results for 
Search instead for 
Did you mean: 

Problem reading MPU-6050 sensor values with STM32F103RB via I2C

k0ltek
Visitor

I'm trying to read data from my MPU-6050 (a 3-axis accelerometer and gyroscope from DFRobot) using an STM32F103RB microcontroller, but I'm running into an issue.

The sensor communicates via I2C. It's powered by 3.3V from the STM32, and I've used  once 1,2kΩ and other time 10kΩ pull-up resistors on the SDA and SCL lines to 3.3V.

During program debugging, the sensor is left completely stationary. However, in the "Live Expressions" view, the raw values from the sensor are inconsistent. The values for the corresponding accelerometer and gyroscope axes are always the same, which seems strange.

Here are the raw readings from the first few reads:

  • First Read:

    • Accel_X_RAW & Gyro_X_RAW: -4017

    • Accel_Y_RAW & Gyro_Y_RAW: 32

    • Accel_Z_RAW & Gyro_Z_RAW: 30476

  • Second Read:

    • Accel_X_RAW & Gyro_X_RAW: 0

    • Accel_Y_RAW & Gyro_Y_RAW: 0

    • Accel_Z_RAW & Gyro_Z_RAW: -1280

  • Third Read:

    • Accel_X_RAW & Gyro_X_RAW: -1280

    • Accel_Y_RAW & Gyro_Y_RAW: 0

    • Accel_Z_RAW & Gyro_Z_RAW: -1280

  • Fourth Read:

    • Accel_X_RAW & Gyro_X_RAW: -2559

    • Accel_Y_RAW & Gyro_Y_RAW: 0

    • Accel_Z_RAW & Gyro_Z_RAW: -1280

In my program, I have a flag variable that counts the number of times the loop has executed.

On subsequent reads, only the Accel/Gyro_X_RAW value changes, decrementing by roughly 1279. When it reaches around -3200, it wraps around to approximately +3200. The Y and Z axes remain unchanged at 0 and -1280, respectively.

This pattern continues until the flag variable reaches a value of 264. At that point, the Accel/Gyro_Y_RAW value changes from 0 to 256, while the X-axis continues its previous pattern of change and Z-axis stays still at value -1280.

Has anyone encountered a similar issue or can spot what I might be doing wrong? I'd appreciate any help or suggestions. Thank you!

/* USER CODE BEGIN Header */
/**
 ******************************************************************************
 * @file           : main.c
 * @brief          : Main program body
 ******************************************************************************
 * @attention
 *
 * Copyright (c) 2025 STMicroelectronics.
 * All rights reserved.
 *
 * This software is licensed under terms that can be found in the LICENSE file
 * in the root directory of this software component.
 * If no LICENSE file comes with this software, it is provided AS-IS.
 *
 ******************************************************************************
 */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "i2c.h"
#include "usart.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */
	int16_t Accel_X_RAW;
	int16_t Accel_Y_RAW;
	int16_t Accel_Z_RAW;
	int16_t Ax;
	int16_t Ay;
	int16_t Az;


	int16_t Gyro_X_RAW;
	int16_t Gyro_Y_RAW;
	int16_t Gyro_Z_RAW;

	int16_t Gx;
	int16_t Gy;
	int16_t Gz;

	int flag = 0;

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

#define MPU6050_ADDR 0xD0

#define SMPLRT_DIV_REG 0x19
#define GYRO_CONFIG_REG 0x1B
#define	ACCEL_CONFIG_REG 0x1C
#define	ACCEL_XOUT_H_REG 0x3B
#define TEMP_OUT_H_REG 0x41
#define GYRO_XOUT_H_REG 0x43
#define WHO_AM_I_REG 0x75

void MPU6050_Init(void) {
	uint8_t check;
	uint8_t Data;

	HAL_I2C_Mem_Read(&hi2c1, MPU6050_ADDR, 0x75, 1, &check, 1, 1000); // read WHO_AM_I
	if (check == 0x68) // 0x68 will be returned by the sensor if everything goes well
			{
		// power management register 0X6B we should write all 0's to wake the sensor up
		Data = 0;
		HAL_I2C_Mem_Write(&hi2c1, MPU6050_ADDR, 0x6B, 1, &Data, 1, 1000);
		// Set DATA RATE of 1KHz by writing SMPLRT_DIV register
		Data = 0x07;
		HAL_I2C_Mem_Write(&hi2c1, MPU6050_ADDR, 0x19, 1, &Data, 1, 1000);
		// Set accelerometer configuration in ACCEL_CONFIG Register
		Data = 0x00; // XA_ST=0,YA_ST=0,ZA_ST=0, FS_SEL=0 -> <strong>±</strong> 2g
		HAL_I2C_Mem_Write(&hi2c1, MPU6050_ADDR, ACCEL_CONFIG_REG, 1, &Data, 1,
				1000);

		Data = 0x00; // XG_ST=0,YG_ST=0,ZG_ST=0, FS_SEL=0 -> <strong>±</strong> 250 ̐/s
		HAL_I2C_Mem_Write(&hi2c1, MPU6050_ADDR, GYRO_CONFIG_REG, 1, &Data, 1,
				1000);
	}
}

void MPU6050_Read_Accel(void) {
	uint8_t Rec_Data[6];

	// Read 6 BYTES of data starting from ACCEL_XOUT_H (0x3B) register
	HAL_I2C_Mem_Read(&hi2c1, MPU6050_ADDR, 0x3B, 1, Rec_Data, 6, 1000);
	Accel_X_RAW = (int16_t) (Rec_Data[0] << 8 | Rec_Data[1]);
	Accel_Y_RAW = (int16_t) (Rec_Data[2] << 8 | Rec_Data[3]);
	Accel_Z_RAW = (int16_t) (Rec_Data[4] << 8 | Rec_Data[5]);
	Ax = (float) Accel_X_RAW / 16384.0;
	Ay = (float) Accel_Y_RAW / 16384.0;
	Az = (float) Accel_Z_RAW / 16384.0;
}

void MPU6050_Read_Gyro(void) {
	uint8_t Rec_Data[6];

	// Read 6 BYTES of data starting from GYRO_XOUT_H register
	HAL_I2C_Mem_Read(&hi2c1, MPU6050_ADDR, 0x43, 1, Rec_Data, 6, 1000);

	Gyro_X_RAW = (int16_t) (Rec_Data[0] << 8 | Rec_Data[1]);
	Gyro_Y_RAW = (int16_t) (Rec_Data[2] << 8 | Rec_Data[3]);
	Gyro_Z_RAW = (int16_t) (Rec_Data[4] << 8 | Rec_Data[5]);

	Gx = (float) Gyro_X_RAW / 131.0;
	Gy = (float) Gyro_Y_RAW / 131.0;
	Gz = (float) Gyro_Z_RAW / 131.0;
}

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{

  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_USART2_UART_Init();
  MX_I2C1_Init();
  /* USER CODE BEGIN 2 */
	MPU6050_Init();

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
	while (1) {
		MPU6050_Read_Accel();
		MPU6050_Read_Gyro();
		flag++;
		HAL_Delay(250);
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
	}
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
	/* User can add his own implementation to report the HAL error return state */
	__disable_irq();
	while (1) {
	}
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @PAram  file: pointer to the source file name
  * @PAram  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

 

4 REPLIES 4
Andrew Neil
Super User

@k0ltek wrote:

in the "Live Expressions" view, the raw values from the sensor are inconsistent.


Is this only in the "Live Expressions" view?

What if you view them via other means?

A complex system that works is invariably found to have evolved from a simple system that worked.
A complex system designed from scratch never works and cannot be patched up to make it work.

@Andrew Neil 

I tried reading the values via UART using Tera Term, but the problem persists.

However, the initial values are now different from before, and the X-axis values swing from negative to positive now. The fact that the values now change by a different amount is related to the additional delay introduced by the UART transmission.

In the code where I didn't use Tera Term when I changed the HAL_Delay(250) to HAL_Delay(500) in the while(1) loop, the X-axis values started changing by a larger increment, and the Z-axis value became -2815 instead of the previous -1280.

void MPU6050_Read_Accel(void) {
	uint8_t Rec_Data[6];
	char msg[64];
	// Read 6 BYTES of data starting from ACCEL_XOUT_H (0x3B) register
	HAL_I2C_Mem_Read(&hi2c1, MPU6050_ADDR, 0x3B, 1, Rec_Data, 6, 1000);
	Accel_X_RAW = (int16_t) (Rec_Data[0] << 8 | Rec_Data[1]);
	Accel_Y_RAW = (int16_t) (Rec_Data[2] << 8 | Rec_Data[3]);
	Accel_Z_RAW = (int16_t) (Rec_Data[4] << 8 | Rec_Data[5]);
	Ax = (float) Accel_X_RAW / 16384.0;
	Ay = (float) Accel_Y_RAW / 16384.0;
	Az = (float) Accel_Z_RAW / 16384.0;
	snprintf(msg, sizeof(msg),
		             "AX_raw= %d  AY_raw= %d  AZ_raw= %d\r\n",
		             Accel_X_RAW, Accel_Y_RAW, Accel_Z_RAW);

		    HAL_UART_Transmit(&huart2, (uint8_t*)msg, strlen(msg), HAL_MAX_DELAY);
}


void MPU6050_Read_Gyro(void) {

	uint8_t Rec_Data[6];
	char msg[64];

	// Read 6 BYTES of data starting from GYRO_XOUT_H register
	HAL_I2C_Mem_Read(&hi2c1, MPU6050_ADDR, 0x43, 1, Rec_Data, 6, 1000);

	Gyro_X_RAW = (int16_t) (Rec_Data[0] << 8 | Rec_Data[1]);
	Gyro_Y_RAW = (int16_t) (Rec_Data[2] << 8 | Rec_Data[3]);
	Gyro_Z_RAW = (int16_t) (Rec_Data[4] << 8 | Rec_Data[5]);

	Gx = (float) Gyro_X_RAW / 131.0;
	Gy = (float) Gyro_Y_RAW / 131.0;
	Gz = (float) Gyro_Z_RAW / 131.0;
	snprintf(msg, sizeof(msg),
	             "GX_raw= %d  GY_raw= %d  GZ_raw= %d\r\n",
	             Gyro_X_RAW, Gyro_Y_RAW, Gyro_Z_RAW);

	    HAL_UART_Transmit(&huart2, (uint8_t*)msg, strlen(msg), HAL_MAX_DELAY);
}


I added only snprintf and HAL_UART_Transmit to functions that read the values of the sensor. 
So here are the results in Tera Term. Values are the same as Live Expressions show it.
Zrzut ekranu 2025-09-29 150650.png

Have you looked at the comms on the I2C wires?

  • Use an oscilloscope to check that they're clean, at the right levels, sensible edges, etc
  • Use an analyser to see the data.

Have you tried just printing the raw bytes from the sensor - before doing any conversion maths on it?

 

PS:


@k0ltek wrote:

MPU-6050 (a 3-axis accelerometer and gyroscope from DFRobot) 


The MPU-6050 sensor itself  is actually a TDK-Invensense product:

https://invensense.tdk.com/products/motion-tracking/6-axis/mpu-6050/ 

https://invensense.tdk.com/developers/login/?message=forums&redirect_to=forums

https://invensense.tdk.com/developers/software-downloads/#smartmotion

A complex system that works is invariably found to have evolved from a simple system that worked.
A complex system designed from scratch never works and cannot be patched up to make it work.
Ozone
Principal II

The element I trust the least in this chain is the update rate and consistency of the "live expression" view.