2024-09-06 02:11 AM - edited 2024-09-06 07:05 PM
"I am using your program and made some changes, but when I use it in the function
HAL_DAC_Start_DMA(&hdac, DAC_CHANNEL_1, (uint32_t*)value, 89, DAC_ALIGN_12B_R);
HAL_TIM_Base_Start(&htim4);
the signal result on the oscilloscope is not continuous. What I mean is, when I use a very long array, the result does not match what I expected. To help you understand, I am attaching two photos comparing the result I want and the result from the program.
I have a signal result like the one on the left, but I want it to be like the one on the right. After investigating, it turns out that the length value in HAL_DAC_Start_DMA was manually changed. If it can be done automatically, please give suggestions so I don't have to set it manually.
program to check
uint16_t hold_samples = 50;
uint16_t firstHalf[64] =
{
2100, 2149, 2250, 2350, 2450, 2549, 2646, 2742, 2837, 2929, 3020, 3108, 3193, 3275, 3355,
3431, 3504, 3574, 3639, 3701, 3759, 3812, 3861, 3906, 3946, 3982, 4013, 4039, 4060, 4076,
4087, 4094, 4095, 4091, 4082, 4069, 4050, 4026, 3998, 3965, 3927, 3884, 3837, 3786, 3730,
3671, 3607, 3539, 3468, 3394, 3316, 3235, 3151, 3064, 2975, 2883, 2790, 2695, 2598, 2500,
2400, 2300, 2199, 2098
}; // Nilai pada bagian pertama
uint16_t secondHalf[71] =
{
1997, 1896, 1795, 1695, 1595, 1497,1305, 1212, 1120, 1031, 944, 860, 779, 701, 627,
556, 488, 424, 365, 309, 258, 211, 168, 130, 97, 69, 45, 26, 13,4, 0, 1, 8, 19, 35, 56, 82,
113, 149, 200, 283, 336, 394, 456, 521, 591, 664, 740, 820, 902, 987, 1075, 1166, 1258,
1353, 1449, 1546, 1645, 1745, 1845, 1947, 1965, 1990, 2010, 2022, 2047
}; // Nilai pada bagian kedua
uint16_t totalSize = (sizeof(firstHalf) / sizeof(uint16_t)) + hold_samples + (sizeof(secondHalf) / sizeof(uint16_t));
uint16_t index = 0;
uint16_t n_firstHalf = (sizeof(firstHalf) / sizeof(uint16_t));
for (int i = 0; i < n_firstHalf; i++) {
value[index] = firstHalf[i];
index++;
}
for (int i = 0; i < hold_samples; i++) {
value[index] = 2048;
index++;
}
int n_secondHalf = (sizeof(secondHalf) / sizeof(uint16_t));
for (int i = 0; i < n_secondHalf; i++) {
value[index] = secondHalf[i];
index++;
}
HAL_DAC_Start_DMA(&hdac, DAC_CHANNEL_1, (uint32_t*)value, 89, DAC_ALIGN_12B_R);
HAL_TIM_Base_Start(&htim4);
2024-09-06 03:33 AM - edited 2024-09-06 03:35 AM
1) Is the DMA in CIRCULAR mode?
2) you probably need to add the hold value to the end of the array
And please post source code with the "</>" button to make it more readable. And you can still edit your original post.
PS / edit: and the DAC can't draw stuff, so it's not "a straight line", it's a DC voltage.
2024-09-06 05:28 AM
> HAL_DAC_Start_DMA(&hdac, DAC_CHANNEL_1, (uint32_t*)value, 89, DAC_ALIGN_12B_R);
You're sending more than 89 values. Shouldn't this be
HAL_DAC_Start_DMA(&hdac, DAC_CHANNEL_1, (uint32_t*)value, index, DAC_ALIGN_12B_R);
Is the value array of sufficient size? Needs to be 64 + 50 + 71 samples long, of type uint16_t. Your code does not include its definition.
2024-09-06 07:03 PM
Yes, I have tried using
HAL_DAC_Start_DMA(&hdac, DAC_CHANNEL_1, (uint32_t*)value, index, DAC_ALIGN_12B_R);
but there is no result. That's why I tried using a fixed number. Is there something wrong with my code? Because when I add a watch for index, it shows 'not evaluated'. I'm a bit confused, please help.
2024-09-06 07:06 PM
Show the full code. Attach it as a 7zip file if needed. No reason why index should not work. Make sure you're using circular DMA.
2024-09-06 07:10 PM
1. yes, DMA in circular mode
2. Can you give an example of what you mean? I'm a beginner and can't quite picture it. I just want to learn. Thank you for your feedback, I have already changed the output display.
2024-09-06 07:17 PM - edited 2024-09-06 07:32 PM
and this is my result if i run this code
and this is my code
#include "main.h"
//ADC_FINAL
//MAPP //OUTPUT = DAC //INPUT = ADC
#define ARRAY_SIZE 4
uint32_t AD_RES[ARRAY_SIZE];
uint32_t input_start = 0;
uint32_t input_end = 4095;
uint32_t output_start = 75; //92
uint32_t output_end = 3900; //3750
uint32_t newArray= 2048; //nilai yang diatur
uint32_t input;
uint32_t hasil;
uint32_t i;
uint32_t y;
uint32_t x;
ADC_HandleTypeDef hadc1;
DAC_HandleTypeDef hdac;
DMA_HandleTypeDef hdma_dac1;
TIM_HandleTypeDef htim4;
//ADC
uint32_t i = 0;
ADC_ChannelConfTypeDef ADC_CH_Cfg = {0};
uint32_t ADC_Channels[4] = {ADC_CHANNEL_1, ADC_CHANNEL_7, ADC_CHANNEL_8, ADC_CHANNEL_9};
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_DAC_Init(void);
static void MX_ADC1_Init(void);
static void MX_TIM4_Init(void);
//64+71 =135
uint16_t value[180] = {};
uint16_t hold_samples = 50;
uint16_t firstHalf[64] =
{
2100, 2149, 2250, 2350, 2450, 2549, 2646, 2742, 2837, 2929, 3020, 3108, 3193, 3275, 3355,
3431, 3504, 3574, 3639, 3701, 3759, 3812, 3861, 3906, 3946, 3982, 4013, 4039, 4060, 4076,
4087, 4094, 4095, 4091, 4082, 4069, 4050, 4026, 3998, 3965, 3927, 3884, 3837, 3786, 3730,
3671, 3607, 3539, 3468, 3394, 3316, 3235, 3151, 3064, 2975, 2883, 2790, 2695, 2598, 2500,
2400, 2300, 2199, 2098
}; //first value
uint16_t secondHalf[71] =
{
1997, 1896, 1795, 1695, 1595, 1497,1305, 1212, 1120, 1031, 944, 860, 779, 701, 627,
556, 488, 424, 365, 309, 258, 211, 168, 130, 97, 69, 45, 26, 13,4, 0, 1, 8, 19, 35, 56, 82,
113, 149, 200, 283, 336, 394, 456, 521, 591, 664, 740, 820, 902, 987, 1075, 1166, 1258,
1353, 1449, 1546, 1645, 1745, 1845, 1947, 1965, 1990, 2010, 2022, 2047
}; // second value
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_DAC_Init();
MX_ADC1_Init();
MX_TIM4_Init();
/* USER CODE BEGIN 2 */
// for (uint32_t i = 124; i < 200; i++)
// {
// Value[i] = newArray;
// }
// HAL_DAC_Start_DMA(&hdac, DAC_CHANNEL_1, (uint32_t*)Value, 131, DAC_ALIGN_12B_R); //115
// HAL_TIM_Base_Start(&htim4);
//keterangan untuk hasil sinyal:
//1. i = 124; i < 124; = 95
//2. i = 124; i < 140; =101
//3. i = 124; i < 200; =131
uint16_t totalSize = (sizeof(firstHalf) / sizeof(uint16_t)) + hold_samples + (sizeof(secondHalf) / sizeof(uint16_t));
uint16_t index = 0;
uint16_t n_firstHalf = (sizeof(firstHalf) / sizeof(uint16_t));
for (int i = 0; i < n_firstHalf; i++) {
value[index] = firstHalf[i];
index++;
}
for (int i = 0; i < hold_samples; i++) {
value[index] = 2048;
index++;
}
int n_secondHalf = (sizeof(secondHalf) / sizeof(uint16_t));
for (int i = 0; i < n_secondHalf; i++) {
value[index] = secondHalf[i];
index++;
}
//HAL_DAC_Start_DMA(&hdac, DAC_CHANNEL_1, (uint32_t*)value, index, DAC_ALIGN_12B_R);
HAL_DAC_Start_DMA(&hdac, DAC_CHANNEL_1, (uint32_t*)value, index, DAC_ALIGN_12B_R);
HAL_TIM_Base_Start(&htim4);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
for(i=0; i<4; i++)
{
//ADC
ADC_CH_Cfg.Channel = ADC_Channels[i];
HAL_ADC_ConfigChannel(&hadc1, &ADC_CH_Cfg);
HAL_ADC_Start(&hadc1);
if(HAL_ADC_PollForConversion(&hadc1, HAL_MAX_DELAY) == HAL_OK)
{
AD_RES[i] = HAL_ADC_GetValue(&hadc1);
}
HAL_ADC_Stop(&hadc1);
}
input = AD_RES[0];
hasil = output_start + ((output_end - output_start)*(input - input_start))/(input_end - input_start);
__HAL_TIM_SET_AUTORELOAD(&htim4, hasil);
__HAL_TIM_SET_COMPARE(&htim4, TIM_CHANNEL_1, hasil);
y = hasil;
x = input;
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 80;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 4;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief ADC1 Initialization Function
* None
* @retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DMAContinuousRequests = DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_1;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* @brief DAC Initialization Function
* None
* @retval None
*/
static void MX_DAC_Init(void)
{
/* USER CODE BEGIN DAC_Init 0 */
/* USER CODE END DAC_Init 0 */
DAC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN DAC_Init 1 */
/* USER CODE END DAC_Init 1 */
/** DAC Initialization
*/
hdac.Instance = DAC;
if (HAL_DAC_Init(&hdac) != HAL_OK)
{
Error_Handler();
}
/** DAC channel OUT1 config
*/
sConfig.DAC_Trigger = DAC_TRIGGER_T4_TRGO;
sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;
if (HAL_DAC_ConfigChannel(&hdac, &sConfig, DAC_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN DAC_Init 2 */
/* USER CODE END DAC_Init 2 */
}
/**
* @brief TIM4 Initialization Function
* None
* @retval None
*/
static void MX_TIM4_Init(void)
{
/* USER CODE BEGIN TIM4_Init 0 */
/* USER CODE END TIM4_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM4_Init 1 */
/* USER CODE END TIM4_Init 1 */
htim4.Instance = TIM4;
htim4.Init.Prescaler = 10;
htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
htim4.Init.Period = 65535;
htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim4) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM4_Init 2 */
/* USER CODE END TIM4_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Stream5_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Stream5_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Stream5_IRQn);
}
/**
* @brief GPIO Initialization Function
* None
* @retval None
*/
static void MX_GPIO_Init(void)
{
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* file: pointer to the source file name
* line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
yeah, there are my code @TDK
2024-09-08 11:41 PM
The way you fill the array right now is:
firstHalf, hold_samples, secondHalf
From what you have shown what you want you might want to add hold_samples to the end.
But first you have to make the DMA run continously.