cancel
Showing results for 
Search instead for 
Did you mean: 

I can't get value from can bus transmission

lee_daeun
Associate
You can see my code

The 'send_frame' / 'CAN_CMD_STD' functions are about CAN bus transmission.



Removing 'CAN_CMD_STD' code will make all my code work. 
In particular, the 'data_set1' array can contain appropriate adc values. But if I add 'CAN_CMD_STD' code to 'send_frame' code, array 'data_set1' is not charged. The transfer speed is so fast that I thought, so I used the delay, but it has no effect.... (And in fact I could get new values ​​in my code when I really try transfer to other boards) Can I get help?? thank you.

 

 

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "stdio.h"
#include "math.h"
#include "string.h"

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;

CAN_HandleTypeDef hcan1;

TIM_HandleTypeDef htim6;

/* USER CODE BEGIN PV */
HAL_StatusTypeDef ret;

/* TIMER6 Variables */
uint32_t  time_1ms;
uint32_t  Tim6_Flag_1ms;
uint32_t  Tim6_Flag_2ms;
uint32_t  Tim6_Flag_10ms;
uint32_t  Tim6_Flag_500ms;

/* CAN Variables */
CAN_FilterTypeDef sFilterConfig;
CAN_TxHeaderTypeDef TxHeader;
uint8_t TxData[8];
uint8_t RxData0[8];
uint8_t RxData1[8];
uint32_t TxMailbox;

uint8_t data_set1[8], data_set2[8], data_set3[8]; //8-16
uint16_t CAN_ID[3] = {0x10, 0x11, 0x12};

/* TOUCH SENSOR emgVariables */

// Encoder variables

// ADC varibales

/*  EBIMU Variables */
//uint8_t acc_L[16] = {0}, acc_T[16] = {0};
//uint8_t acc_U[16] = {0};
//uint8_t acc_M[16] = {0};
//short SOP = (0x55<<8 | 0x55), SOP2 = 0;
//short SOP1 = 0, SOP3 = 0;
//short SOP4 = 0;
//short acc_Lx = 0, acc_Ly = 0, acc_Lz = 0, acc_Tx = 0, acc_Ty = 0, acc_Tz = 0;
//short acc_Ux = 0, acc_Uy = 0, acc_Uz = 0;
//short acc_Mx = 0, acc_My = 0, acc_Mz = 0;
//float acc_LA[3], acc_TR[3];
//float acc_UA[3];
//float acc_MA[3];

/* EMG Variables */
uint16_t emg[5];
uint16_t dat[5];
uint16_t cnt = 0;

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_CAN1_Init(void);
static void MX_TIM6_Init(void);
static void MX_ADC1_Init(void);
/* USER CODE BEGIN PFP */
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim);
HAL_StatusTypeDef CAN_Setting(void);
static void Can_FilterConfig(CAN_FilterTypeDef* sFilterConfig, uint32_t FilterBank, uint32_t FilterMode, uint32_t FilterScale, 
uint32_t FilterIdHigh, uint32_t FilterIdLow, uint32_t FilterMaskIdHigh, uint32_t FilterMaskIdLow, uint32_t FilterFIFOAssignment,
uint32_t FilterActivation, uint32_t SlaveStartFilterBank);
void CAN_CMD_STD(uint16_t id, uint8_t length, uint8_t* data);
void send_frame(void);


/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc) {

	// Continuous ADC conversion of Analog inputs is complete and stored in the data structure to be used later.
	dat[0] = emg[0];
	dat[1] = emg[1];
	dat[2] = emg[2];
	dat[3] = emg[3];
	dat[4] = emg[4];

}
/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_CAN1_Init();
  MX_TIM6_Init();
  MX_ADC1_Init();
  /* USER CODE BEGIN 2 */
	HAL_TIM_Base_Start_IT(&htim6);	
	while(CAN_Setting() != HAL_OK){};
	HAL_Delay(500);
	HAL_TIM_Base_Start_IT(&htim6);
	HAL_ADC_Start_DMA(&hadc1, (uint32_t*)&emg, 5);	
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */

	
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
		/* 250HZ LOOP */

		HAL_Delay(500);
		if(Tim6_Flag_500ms)
		{
			send_frame();
		}

		/*if(Tim6_Flag_1ms)
		{*/
			
			/* EBIMU SENSOR 1*/
		/*
		ret = HAL_UART_Receive_DMA(&huart1, acc_L, 16);
			SOP1 = (acc_L[0]<<8 | acc_L[1]);
			if(ret == HAL_OK && SOP1 == SOP)
			{
				acc_Lx = (acc_L[8]<<8 | acc_L[9]); acc_Ly = (acc_L[10]<<8 | acc_L[11]);	acc_Lz = (acc_L[12]<<8 | acc_L[13]);
				acc_LA[0] = acc_Lx * 0.001;	acc_LA[1] = acc_Ly * 0.001;	acc_LA[2] = acc_Lz * 0.001;
				
			 
			}
			*/
			/* EBIMU SENSOR 2*/
		/*
			ret = HAL_UART_Receive_DMA(&huart3, acc_U, 16);
			SOP2 = (acc_U[0]<<8 | acc_U[1]);
			if(ret == HAL_OK && SOP2 == SOP)
			{
				
				acc_Ux = (acc_U[8]<<8 | acc_U[9]); acc_Uy = (acc_U[10]<<8 | acc_U[11]);	acc_Uz = (acc_U[12]<<8 | acc_U[13]);
				acc_UA[0] = acc_Ux * 0.001;	acc_UA[1] = acc_Uy * 0.001;	acc_UA[2] = acc_Uz * 0.001;
			
			}
			*/
			/* EBIMU SENSOR 3*/
			/*
			ret = HAL_UART_Receive_DMA(&huart6, acc_T, 16);
			SOP3 = (acc_T[0]<<8 | acc_T[1]);
			if(ret == HAL_OK && SOP3 == SOP)
			{
				
				acc_Tx = (acc_T[8]<<8 | acc_T[9]); acc_Ty = (acc_T[10]<<8 | acc_T[11]);	acc_Tz = (acc_T[12]<<8 | acc_T[13]);
				acc_TR[0] = acc_Tx * 0.001;	acc_TR[1] = acc_Ty * 0.001;	acc_TR[2] = acc_Tz * 0.001;
			
			}
			*/
			/* EBIMU SENSOR 4*/
			/*
			ret = HAL_UART_Receive_DMA(&huart3, acc_M, 16);
			SOP4 = (acc_M[0]<<8 | acc_M[1]);
			if(ret == HAL_OK && SOP4 == SOP)
			{
				
				acc_Mx = (acc_M[8]<<8 | acc_M[9]); acc_My = (acc_M[10]<<8 | acc_M[11]);	acc_Mz = (acc_M[12]<<8 | acc_M[13]);
				acc_MA[0] = acc_Mx * 0.001;	acc_MA[1] = acc_My * 0.001;	acc_MA[2] = acc_Mz * 0.001;
			
			}
					
			*/
			/* FLAG Reset */
			/*Tim6_Flag_1ms = 0;
		}*/
		
		
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 8;
  RCC_OscInitStruct.PLL.PLLN = 336;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 7;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief ADC1 Initialization Function
  * @PAram None
  * @retval None
  */
static void MX_ADC1_Init(void)
{

  /* USER CODE BEGIN ADC1_Init 0 */

  /* USER CODE END ADC1_Init 0 */

  ADC_ChannelConfTypeDef sConfig = {0};

  /* USER CODE BEGIN ADC1_Init 1 */

  /* USER CODE END ADC1_Init 1 */

  /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
  */
  hadc1.Instance = ADC1;
  hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV8;
  hadc1.Init.Resolution = ADC_RESOLUTION_12B;
  hadc1.Init.ScanConvMode = ENABLE;
  hadc1.Init.ContinuousConvMode = ENABLE;
  hadc1.Init.DiscontinuousConvMode = DISABLE;
  hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc1.Init.NbrOfConversion = 5;
  hadc1.Init.DMAContinuousRequests = ENABLE;
  hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  if (HAL_ADC_Init(&hadc1) != HAL_OK)
  {
    Error_Handler();
  }

  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  */
  sConfig.Channel = ADC_CHANNEL_11;
  sConfig.Rank = 1;
  sConfig.SamplingTime = ADC_SAMPLETIME_56CYCLES;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }

  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  */
  sConfig.Channel = ADC_CHANNEL_12;
  sConfig.Rank = 2;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }

  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  */
  sConfig.Channel = ADC_CHANNEL_13;
  sConfig.Rank = 3;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }

  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  */
  sConfig.Channel = ADC_CHANNEL_14;
  sConfig.Rank = 4;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }

  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  */
  sConfig.Channel = ADC_CHANNEL_15;
  sConfig.Rank = 5;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN ADC1_Init 2 */

  /* USER CODE END ADC1_Init 2 */

}

/**
  * @brief CAN1 Initialization Function
  * @PAram None
  * @retval None
  */
static void MX_CAN1_Init(void)
{

  /* USER CODE BEGIN CAN1_Init 0 */

  /* USER CODE END CAN1_Init 0 */

  /* USER CODE BEGIN CAN1_Init 1 */

  /* USER CODE END CAN1_Init 1 */
  hcan1.Instance = CAN1;
  hcan1.Init.Prescaler = 7;
  hcan1.Init.Mode = CAN_MODE_NORMAL;
  hcan1.Init.SyncJumpWidth = CAN_SJW_1TQ;
  hcan1.Init.TimeSeg1 = CAN_BS1_15TQ;
  hcan1.Init.TimeSeg2 = CAN_BS2_8TQ;
  hcan1.Init.TimeTriggeredMode = DISABLE;
  hcan1.Init.AutoBusOff = ENABLE;
  hcan1.Init.AutoWakeUp = ENABLE;
  hcan1.Init.AutoRetransmission = ENABLE;
  hcan1.Init.ReceiveFifoLocked = DISABLE;
  hcan1.Init.TransmitFifoPriority = DISABLE;
  if (HAL_CAN_Init(&hcan1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN CAN1_Init 2 */

  /* USER CODE END CAN1_Init 2 */

}

/**
  * @brief TIM6 Initialization Function
  * @PAram None
  * @retval None
  */
static void MX_TIM6_Init(void)
{

  /* USER CODE BEGIN TIM6_Init 0 */

  /* USER CODE END TIM6_Init 0 */

  TIM_MasterConfigTypeDef sMasterConfig = {0};

  /* USER CODE BEGIN TIM6_Init 1 */

  /* USER CODE END TIM6_Init 1 */
  htim6.Instance = TIM6;
  htim6.Init.Prescaler = 83;
  htim6.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim6.Init.Period = 999;
  htim6.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_Base_Init(&htim6) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim6, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM6_Init 2 */

  /* USER CODE END TIM6_Init 2 */

}

/**
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void)
{

  /* DMA controller clock enable */
  __HAL_RCC_DMA2_CLK_ENABLE();

  /* DMA interrupt init */
  /* DMA2_Stream0_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn);

}

/**
  * @brief GPIO Initialization Function
  * @PAram None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOH_CLK_ENABLE();
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOD_CLK_ENABLE();

  /*Configure GPIO pins : PC10 PC11 */
  GPIO_InitStruct.Pin = GPIO_PIN_10|GPIO_PIN_11;
  GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  GPIO_InitStruct.Alternate = GPIO_AF7_USART3;
  HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}

/* USER CODE BEGIN 4 */
/* TIMER setting */
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
	
	if(htim->Instance == htim6.Instance) time_1ms++;
	if((time_1ms % 1) == 0) Tim6_Flag_1ms = 1;
	if((time_1ms % 2) == 0) Tim6_Flag_2ms = 1;
	if((time_1ms % 10) == 0) Tim6_Flag_10ms = 1;
	if((time_1ms % 500) == 0) Tim6_Flag_500ms = 1;
	
}

/* CAN Setting */
HAL_StatusTypeDef CAN_Setting(void)
{
	
	Can_FilterConfig(&sFilterConfig, 0, CAN_FILTERMODE_IDLIST, CAN_FILTERSCALE_16BIT, 0x10, 0x11, 0x12, 0x13, CAN_FILTER_FIFO0, ENABLE, 14);
	if (HAL_CAN_Start(&hcan1) != HAL_OK)
  {
    /* START ERROR */
    Error_Handler();
  }
	if (HAL_CAN_ActivateNotification(&hcan1, CAN_IT_RX_FIFO0_MSG_PENDING) != HAL_OK)
  {
    /* NOTIFICATION ERROR */
    Error_Handler();
  }
	if (HAL_CAN_ActivateNotification(&hcan1, CAN_IT_RX_FIFO1_MSG_PENDING) != HAL_OK)
  {
    /* NOTIFICATION ERROR */
    Error_Handler();
  }
	return HAL_OK;
	
}

/* CAN FILTER Setting */
static void Can_FilterConfig(CAN_FilterTypeDef* sFilterConfig, uint32_t FilterBank, uint32_t FilterMode, uint32_t FilterScale, 
uint32_t FilterIdHigh, uint32_t FilterIdLow, uint32_t FilterMaskIdHigh, uint32_t FilterMaskIdLow, uint32_t FilterFIFOAssignment,
uint32_t FilterActivation, uint32_t SlaveStartFilterBank)
{	
  
	sFilterConfig->FilterBank = FilterBank;
  sFilterConfig->FilterMode = FilterMode;
  sFilterConfig->FilterScale = FilterScale;
	sFilterConfig->FilterIdHigh = FilterIdHigh<<5;
  sFilterConfig->FilterIdLow = FilterIdLow<<5;
  sFilterConfig->FilterMaskIdHigh = FilterMaskIdHigh<<5;
  sFilterConfig->FilterMaskIdLow = FilterMaskIdLow<<5;
  sFilterConfig->FilterFIFOAssignment = FilterFIFOAssignment;
  sFilterConfig->FilterActivation = FilterActivation;
  sFilterConfig->SlaveStartFilterBank = SlaveStartFilterBank;
	if(HAL_CAN_ConfigFilter(&hcan1, sFilterConfig) != HAL_OK)
  {
		/* Filter Configuration Error */
    Error_Handler();
  }
	
}


// CAN trasmission

void CAN_CMD_STD(uint16_t id, uint8_t length, uint8_t* data)
{
	
  int k=0;	
	
	TxHeader.StdId = id;
  TxHeader.DLC = length;
  TxHeader.RTR = CAN_RTR_DATA;
  TxHeader.IDE = CAN_ID_STD;
	TxHeader.TransmitGlobalTime = DISABLE;
		
	for ( k = 0 ; k < length ; k ++ ) TxData[k] = data[k];
	
	if (HAL_CAN_AddTxMessage(&hcan1, &TxHeader, TxData, &TxMailbox) != HAL_OK)
  {
          /* Transmission request Error */
          Error_Handler();
  }
	
	while(HAL_CAN_GetTxMailboxesFreeLevel(&hcan1) != 3) {}; //Wait transmission complete
		
}

void send_frame()
{
	// emg
	
	data_set1[0] = dat[0] ;
	data_set1[1] = (dat[0] >> 8);
	
	data_set1[2] = dat[1];
	data_set1[3] = (dat[1]>>8);
	data_set1[4] = dat[2];
	data_set1[5] = (dat[2]>>8);
	data_set1[6] = dat[3];
	data_set1[7] = (dat[3]>>8);

	/*
	data_set1[0] = 1;
	data_set1[1] = 2;
	data_set1[2] = 3;
	data_set1[3] = 4;
	data_set1[4] = 5;
	data_set1[5] = 6;
	data_set1[6] = 7;
	data_set1[7] = 8;
		*/
	// Load cell
	
	data_set2[0] = dat[4];
	data_set2[1] = (dat[4]>>8);
	

	// angle conversion
	//memcpy(&ang_u32[0],&ang[0],8);
	//memcpy(&ang_u32[1],&ang[1],8);

	
	//Transmission
			HAL_Delay(1000);

	CAN_CMD_STD(CAN_ID[0], 8, data_set1);
	CAN_CMD_STD(CAN_ID[1], 8, data_set2);
	//CAN_CMD_STD(CAN_ID[2], 8, data_set3);
	
	
}



/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @PAram  file: pointer to the source file name
  * @PAram  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

 

 

 

 

0 REPLIES 0