2022-03-09 12:46 PM
STM32F429ZIT6 - Nucleo
I am doing some tests with this board, it reads Encoder input in x4 mode, generates TRGO to ITR1 slave TIM1 in One pulse mode when it reaches TIM2->CCR3 value and updates Encoder counts and number of triggers every 15 seconds on serial.
I have observed when encoder count get above a certain threshold (less than 2^32 -1)
this serial routines either stop outputing on serial or get stucks in continuous output.
Is there anything wrong with this ?
counter and i are declared as global variable
volatile uint32_t counter = 0;
uint32_t i = 0;
uint8_t data[50] ={'\0'};
uint32_t startTime = HAL_GetTick();
uint32_t waitTime = 15000;
while (1)
{
if(HAL_GetTick()-startTime > waitTime){
startTime = HAL_GetTick();
sprintf(data, "Encoder count : %d Number of triggers : %d \r\n", counter,i);
HAL_UART_Transmit(&huart3,data,sizeof(data),10);
}
}
2022-03-09 12:49 PM
here is full main.c
#include "main.h"
TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim2;
UART_HandleTypeDef huart3;
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART3_UART_Init(void);
static void MX_TIM2_Init(void);
static void MX_TIM1_Init(void);
volatile uint32_t counter = 0;
volatile uint8_t direction = 0xFF;
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
{
counter = __HAL_TIM_GET_COUNTER(htim);
// direction = (TIM2->CR1 & (1<<4))>>4;
}
#define STEP 10
#define DistToStart 10
#define FORWARD 0
#define BACKWARD 1
uint32_t trig_pos = 0;
uint32_t i = 0;
void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim){
//TIM2->CR1 Bit 4 = DIR // DIR = 0 Upcounting, DIR = 1 Downcounting
i++;
trig_pos = STEP*i +DistToStart; // Update next encoder position
__HAL_TIM_SET_COMPARE(&htim2,TIM_CHANNEL_3,trig_pos); //Write in TIM2->CCR3 (32 bits) Next encoder position compare value
TIM1->CR1 |= (1<<0); // Set CEN bit in TIM1->CR1 to restart TIM1 CNT
}
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_USART3_UART_Init();
MX_TIM2_Init();
MX_TIM1_Init();
/* USER CODE BEGIN 2 */
uint8_t data[100] ={'\0'};
HAL_TIM_OnePulse_Start(&htim1,TIM_CHANNEL_1);
//HAL_TIM_PWM_Start(&htim1,TIM_CHANNEL_1);
HAL_TIM_Encoder_Start_IT(&htim2, TIM_CHANNEL_ALL);
HAL_TIM_OC_Start_IT(&htim2, TIM_CHANNEL_3);
uint32_t startTime = HAL_GetTick();
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
uint32_t waitTime = 15000;
while (1)
{
if(HAL_GetTick()-startTime > waitTime){
startTime = HAL_GetTick();
sprintf(data, "Encoder count : %d Number of triggers : %d \r\n", counter,i);
HAL_UART_Transmit(&huart3,data,sizeof(data),10);
}
}
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 180;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 4;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
if (HAL_PWREx_EnableOverDrive() != HAL_OK)
{
Error_Handler();
}
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
Error_Handler();
}
}
static void MX_TIM1_Init(void)
{
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_SlaveConfigTypeDef sSlaveConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
htim1.Instance = TIM1;
htim1.Init.Prescaler = 0;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 451;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_OnePulse_Init(&htim1, TIM_OPMODE_SINGLE) != HAL_OK)
{
Error_Handler();
}
sSlaveConfig.SlaveMode = TIM_SLAVEMODE_TRIGGER;
sSlaveConfig.InputTrigger = TIM_TS_ITR1;
if (HAL_TIM_SlaveConfigSynchro(&htim1, &sSlaveConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM2;
sConfigOC.Pulse = 1;
sConfigOC.OCPolarity = TIM_OCPOLARITY_LOW;
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_LOW;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_SET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_SET;
if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = 0;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM1_Init 2 */
// sConfigOC.OCMode = TIM_OCMODE_PWM1; //Actice High trigger pulse
// sConfigOC.OCMode = TIM_OCMODE_PWM2; //Actice Low trigger pulse
// TIM1 Clock input is 180 MHz, period = 5.555 ns
// TIM1_CCR1 = 1 (sConfigOC.Pulse = 1;)
// TIM1_ARR = 451 (htim1.Init.Period = 451;)
// Delay to generate pulse = 1 * 5.555 ns = 5.555ns
// Pulse width = (451-1)*5.555ns = 2.5 us
/* USER CODE END TIM1_Init 2 */
HAL_TIM_MspPostInit(&htim1);
}
static void MX_TIM2_Init(void)
{
TIM_Encoder_InitTypeDef sConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
htim2.Instance = TIM2;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP; //TIM_COUNTERMODE_UP
htim2.Init.Period = 4294967295;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; //was enable
if (HAL_TIM_OC_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sConfig.EncoderMode = TIM_ENCODERMODE_TI12;
sConfig.IC1Polarity = TIM_ICPOLARITY_FALLING;
sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
sConfig.IC1Filter = 10;
sConfig.IC2Polarity = TIM_ICPOLARITY_FALLING;
sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
sConfig.IC2Filter = 10;
if (HAL_TIM_Encoder_Init(&htim2, &sConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_OC3REF;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_ENABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_ACTIVE;
sConfigOC.Pulse = DistToStart;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_OC_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
{
Error_Handler();
}
__HAL_TIM_DISABLE_OCxPRELOAD(&htim2, TIM_CHANNEL_3);
}
static void MX_USART3_UART_Init(void)
{
huart3.Instance = USART3;
huart3.Init.BaudRate = 115200;
huart3.Init.WordLength = UART_WORDLENGTH_8B;
huart3.Init.StopBits = UART_STOPBITS_1;
huart3.Init.Parity = UART_PARITY_NONE;
huart3.Init.Mode = UART_MODE_TX_RX;
huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart3.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart3) != HAL_OK)
{
Error_Handler();
}
}
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
HAL_GPIO_WritePin(LED_PIN_GPIO_Port, LED_PIN_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : LED_PIN_Pin */
GPIO_InitStruct.Pin = LED_PIN_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LED_PIN_GPIO_Port, &GPIO_InitStruct);
}
void Error_Handler(void)
{
__disable_irq();
while (1)
{
}
}
#ifdef USE_FULL_ASSERT
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
2022-03-09 01:49 PM
The two shouldn't interact at a peripheral level.
I'd suggest qualifying the interrupt source.
Have Error_Handler() and HardFault_Handler() output info if they get stuck there.
Use the debugger to understand what's happening in the failure cases, perhaps add code yourself to identify why continuous/repeated output is occurring, etc.
Note sprintf() should return the output string length, use that rather than blindly sending the whole array, make sure that's not overrunning.