cancel
Showing results for 
Search instead for 
Did you mean: 

Pulse width of One pulse Mode doesn't change with CCRx register.

DPatr.2
Associate III

TIM1 is slave of TIM2 and get triggered correctly when Encoder count reaches sConfigOC.Pulse = 200;

However, the output pin TIM1_CH1 (PE9) stays high.

#include "main.h"
 
TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim2;
 
UART_HandleTypeDef huart3;
  
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART3_UART_Init(void);
static void MX_TIM2_Init(void);
static void MX_TIM1_Init(void);
 
 
uint32_t counter = 0;
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
{
	counter = __HAL_TIM_GET_COUNTER(htim);
}
 
int main(void)
{
  
  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();
  
  /* Configure the system clock */
  SystemClock_Config();
 
  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_USART3_UART_Init();
  MX_TIM2_Init();
  MX_TIM1_Init();
  /* USER CODE BEGIN 2 */
 
  uint8_t data[50] ={'\0'};
 
  HAL_TIM_OnePulse_Start(&htim1,TIM_CHANNEL_1);
  HAL_TIM_PWM_Start(&htim1,TIM_CHANNEL_1);
 
  HAL_TIM_Encoder_Start_IT(&htim2, TIM_CHANNEL_ALL);
  HAL_TIM_OC_Start(&htim2, TIM_CHANNEL_3);
 
  /* USER CODE END 2 */
 
  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
 
	sprintf(data, "Encoder count : %d\r\n", counter);
	HAL_UART_Transmit(&huart3,data,sizeof(data),10);
	HAL_Delay(100);
 
	  /* USER CODE END 3 */
 
    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}
 
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
 
  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLM = 8;
  RCC_OscInitStruct.PLL.PLLN = 180;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 4;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Activate the Over-Drive mode
  */
  if (HAL_PWREx_EnableOverDrive() != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
 
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
  {
    Error_Handler();
  }
}
 
/**
  * @brief TIM1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM1_Init(void)
{
 
  /* USER CODE BEGIN TIM1_Init 0 */
 
  /* USER CODE END TIM1_Init 0 */
 
  TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  TIM_SlaveConfigTypeDef sSlaveConfig = {0};
  TIM_MasterConfigTypeDef sMasterConfig = {0};
  TIM_OC_InitTypeDef sConfigOC = {0};
  TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
 
  /* USER CODE BEGIN TIM1_Init 1 */
 
  /* USER CODE END TIM1_Init 1 */
  htim1.Instance = TIM1;
  htim1.Init.Prescaler = 0;
  htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim1.Init.Period = 65535;
  htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim1.Init.RepetitionCounter = 0;
  htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
  if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
  {
    Error_Handler();
  }
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_TIM_OnePulse_Init(&htim1, TIM_OPMODE_SINGLE) != HAL_OK)
  {
    Error_Handler();
  }
  sSlaveConfig.SlaveMode = TIM_SLAVEMODE_TRIGGER;
  sSlaveConfig.InputTrigger = TIM_TS_ITR1;
  if (HAL_TIM_SlaveConfigSynchro(&htim1, &sSlaveConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_PWM2;
  sConfigOC.Pulse = 32768;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_LOW;
  sConfigOC.OCNPolarity = TIM_OCNPOLARITY_LOW;
  sConfigOC.OCFastMode = TIM_OCFAST_ENABLE;
  sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
  sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
  if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  {
    Error_Handler();
  }
  sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
  sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
  sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
  sBreakDeadTimeConfig.DeadTime = 0;
  sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
  sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
  sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
  if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM1_Init 2 */
  //	sConfigOC.OCMode = TIM_OCMODE_PWM2;	//Actice High trigger pulse
  /* USER CODE END TIM1_Init 2 */
  HAL_TIM_MspPostInit(&htim1);
 
}
 
static void MX_TIM2_Init(void)
{
  
  TIM_Encoder_InitTypeDef sConfig = {0};
  TIM_MasterConfigTypeDef sMasterConfig = {0};
  TIM_OC_InitTypeDef sConfigOC = {0};
 
  htim2.Instance = TIM2;
  htim2.Init.Prescaler = 0;
  htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim2.Init.Period = 4294967295;
  htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
  if (HAL_TIM_OC_Init(&htim2) != HAL_OK)
  {
    Error_Handler();
  }
  sConfig.EncoderMode = TIM_ENCODERMODE_TI12;
  sConfig.IC1Polarity = TIM_ICPOLARITY_FALLING;
  sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
  sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
  sConfig.IC1Filter = 10;
  sConfig.IC2Polarity = TIM_ICPOLARITY_FALLING;
  sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
  sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
  sConfig.IC2Filter = 10;
  if (HAL_TIM_Encoder_Init(&htim2, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_OC3REF;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_ENABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_ACTIVE;
  sConfigOC.Pulse = 200;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  if (HAL_TIM_OC_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
  {
    Error_Handler();
  }
  __HAL_TIM_ENABLE_OCxPRELOAD(&htim2, TIM_CHANNEL_3);
 
}
 
static void MX_USART3_UART_Init(void)
{
 
  huart3.Instance = USART3;
  huart3.Init.BaudRate = 115200;
  huart3.Init.WordLength = UART_WORDLENGTH_8B;
  huart3.Init.StopBits = UART_STOPBITS_1;
  huart3.Init.Parity = UART_PARITY_NONE;
  huart3.Init.Mode = UART_MODE_TX_RX;
  huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart3.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_UART_Init(&huart3) != HAL_OK)
  {
    Error_Handler();
  }
 
}
 
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};
 
  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();
  __HAL_RCC_GPIOE_CLK_ENABLE();
  __HAL_RCC_GPIOD_CLK_ENABLE();
 
  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(LED_PIN_GPIO_Port, LED_PIN_Pin, GPIO_PIN_RESET);
 
  /*Configure GPIO pin : LED_PIN_Pin */
  GPIO_InitStruct.Pin = LED_PIN_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(LED_PIN_GPIO_Port, &GPIO_InitStruct);
 
}
 
/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}
 
#ifdef  USE_FULL_ASSERT
 
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
 

4 REPLIES 4
DPatr.2
Associate III

By changing

htim1.Init.Prescaler = 0;

to

htim1.Init.Prescaler = 1;

I can see a pulse on PE9,

Now the question to modify pulse width still stands,

Pulse width doesnt change to this configuration parameter.

sConfigOC.Pulse

> sConfigOC.OCFastMode = TIM_OCFAST_ENABLE;

Don't.

JW

DPatr.2
Associate III

Solution was to setup PWM parameters in MX_TIM1_Init(); but without calling HAL_TIM_PWM_Start(&htim1,TIM_CHANNEL_1);

seems like there is conflict with HAL_TIM_OnePulse_Start(&htim1,TIM_CHANNEL_1);

> Solution was

Probably not.

You haven't told us your STM32 model, but looking at CubeF4, HAL_TIM_PWM_Start() and HAL_TIM_OnePulse_Start() are mostly identical and all both effectively do is that they set TIMx_CCER.CCxE (HAL_TIM_OnePulse_Start() quite bizarrely sets both CC1E and CC2E regardless of the Channel parameter's value, but that's on of those things Cube does for you).

So, probably, you've made also some other modification which made the difference.

It's easy to test, just put back HAL_TIM_PWM_Start(&htim1,TIM_CHANNEL_1);

JW