cancel
Showing results for 
Search instead for 
Did you mean: 

Problem Running ADC with DMA in single-shot mode

Xses
Associate II

Hello,

I'm trying to capture single-shot ADC reading from 3 subsequent channels. I'm using CubeIDE and STM32L100RCT6 on the Discovery board, but I have the same results with STM32F103CBT6. I do everything according to that document, but whenever I try, my ADC fills the buffer with only one channel reading, stops, and never starts HAL_ADC_ConvCpltCallback() routine, so it gets stuck in the while loop, which is intended to stops processor and waits for conversion complete:

0693W000006GABUQA4.bmp 

I know it does not look wright, but I've also tried that:

0693W000006G9eqQAC.bmp 

And it looks like it is working, but ADC only reads 2 channels out of 3 and loops (3rd reading should be smaller than 2nd). I attach my whole code below.

Thanks for any help.

/* Includes ------------------------------------------------------------------*/
#include "main.h"
 
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
 
#include <stdio.h>
 
/* USER CODE END Includes */
 
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc;
DMA_HandleTypeDef hdma_adc;
 
TIM_HandleTypeDef htim2;
 
UART_HandleTypeDef huart1;
 
/* USER CODE BEGIN PV */
 
bool dma_buf_full = 0;
uint16_t dma_buf_len = 3;
uint16_t dma_buf[3];
 
/* USER CODE END PV */
 
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_TIM2_Init(void);
 
int main(void)
{
  /* MCU Configuration--------------------------------------------------------*/
 
  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();
 
  /* Configure the system clock */
  SystemClock_Config();
 
  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_ADC_Init();
  MX_USART1_UART_Init();
  MX_TIM2_Init();
 
  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
 
	  HAL_ADC_Start_DMA(&hadc, (uint32_t*)dma_buf, 3);
	  while (dma_buf_full == 0) {}						//Waiting for DMA to do DMA stuff
	  dma_buf_full = 0;
	  HAL_ADC_Stop_DMA(&hadc);
 
 
	  HAL_Delay(100);
 
    /* USER CODE END WHILE */
 
    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}
 
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
 
  /** Configure the main internal regulator output voltage
  */
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL6;
  RCC_OscInitStruct.PLL.PLLDIV = RCC_PLL_DIV3;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV8;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
 
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
  {
    Error_Handler();
  }
}
 
static void MX_ADC_Init(void)
{
 
  ADC_ChannelConfTypeDef sConfig = {0};
 
  /* USER CODE BEGIN ADC_Init 1 */
 
  /* USER CODE END ADC_Init 1 */
  /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
  */
  hadc.Instance = ADC1;
  hadc.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
  hadc.Init.Resolution = ADC_RESOLUTION_12B;
  hadc.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc.Init.ScanConvMode = ADC_SCAN_ENABLE;
  hadc.Init.EOCSelection = ADC_EOC_SEQ_CONV;
  hadc.Init.LowPowerAutoWait = ADC_AUTOWAIT_DISABLE;
  hadc.Init.LowPowerAutoPowerOff = ADC_AUTOPOWEROFF_DISABLE;
  hadc.Init.ChannelsBank = ADC_CHANNELS_BANK_A;
  hadc.Init.ContinuousConvMode = DISABLE;
  hadc.Init.NbrOfConversion = 3;
  hadc.Init.DiscontinuousConvMode = DISABLE;
  hadc.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  hadc.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  hadc.Init.DMAContinuousRequests = DISABLE;
  if (HAL_ADC_Init(&hadc) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  */
  sConfig.Channel = ADC_CHANNEL_0;
  sConfig.Rank = ADC_REGULAR_RANK_1;
  sConfig.SamplingTime = ADC_SAMPLETIME_4CYCLES;
  if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  */
  sConfig.Channel = ADC_CHANNEL_1;
  sConfig.Rank = ADC_REGULAR_RANK_2;
  if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  */
  sConfig.Channel = ADC_CHANNEL_2;
  sConfig.Rank = ADC_REGULAR_RANK_3;
  if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
}
 
static void MX_TIM2_Init(void)
{
 
  TIM_MasterConfigTypeDef sMasterConfig = {0};
  TIM_OC_InitTypeDef sConfigOC = {0};
 
  /* USER CODE BEGIN TIM2_Init 1 */
 
  /* USER CODE END TIM2_Init 1 */
  htim2.Instance = TIM2;
  htim2.Init.Prescaler = 0;
  htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim2.Init.Period = 65536 - 1;
  htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_OC_Init(&htim2) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_TIMING;
  sConfigOC.Pulse = 0;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  if (HAL_TIM_OC_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  {
    Error_Handler();
  }
}
 
static void MX_USART1_UART_Init(void)
{
 
  huart1.Instance = USART1;
  huart1.Init.BaudRate = 115200;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_HalfDuplex_Init(&huart1) != HAL_OK)
  {
    Error_Handler();
  }
}
 
static void MX_DMA_Init(void)
{
 
  /* DMA controller clock enable */
  __HAL_RCC_DMA1_CLK_ENABLE();
 
  /* DMA interrupt init */
  /* DMA1_Channel1_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
 
}
 
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};
 
  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOC_CLK_ENABLE();
 
  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOC, LD4_Pin|LD3_Pin, GPIO_PIN_RESET);
 
  /*Configure GPIO pins : LD4_Pin LD3_Pin */
  GPIO_InitStruct.Pin = LD4_Pin|LD3_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
 
}
 
/* USER CODE BEGIN 4 */
 
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc) {
 
	dma_buf_full = 1;
 
}
 
/* USER CODE END 4 */

1 ACCEPTED SOLUTION

Accepted Solutions

Read out and check/post ADC and DMA registers content.

JW

View solution in original post

2 REPLIES 2

Read out and check/post ADC and DMA registers content.

JW

Xses
Associate II

Thank you for the advice. I've done so and I've figured it out. As usual, it was a pretty dumb mistake. After checking ADC bits I've noticed that Overrun in ADC_SR was high, so I've raised up DMA clock to keep it closer to the fixed ADC clock and it worked, so it was just a problem with DMA not keeping up with ADC. (Dzięki kolego.)