2022-10-11 06:52 AM
I use timer with input capture mode, to be able to measure time period of an optical encoder pulse. I experienced that measured value rarely is twice as the expected one. I tried with different timer prescaler values, but same problem remained. Suspected that interrupt service or input trigger signal is not proper, so I checked both of them (see measurement results below).
To check ISR, I put a gpio toggle function into the callback for a given pin I measured.
In ideal case, input signal should give a periodic pulse signal with a frequency value twice as the gpio signal made by the toggle pin function inside the callback.
It seems callback function is not called in every input. I did not experience if that skip should emerge in a periodical way. What could be the root-cause?
Evalboard: STM32F446RE (Nucleo Devboard)
My clock settings:
My TIMER_3 settings:
Measurement result (Input Capture input signal -- green; Capture Callback Function -- yellow)
Measurement result (zoomed)
2022-10-12 01:03 AM
IMO you are missing interrupts because of lengthy TIM ISR execution. Maybe it's not the TIM ISR which is lengthy but there is another lengthy ISR with higher priority which kicks in.
Toggle the "debug" pin at the entry and exit of TIM ISR (not the Cube/HAL "callback" but the real interrupt handler) and observe.
JW
2022-10-12 03:28 AM
..and set the cpu to higher clock ! now is only 16 MHz.
-> in Cube -> ckock tree : system clock mux -> PLLCLK
so ISR will be faster also.
2022-10-15 04:30 AM
Thank you, Guys! I did all of your suggestions, but the root-cause was actually that I directly read capture-compare register value in a function, called in the main loop. I had to put CCR content read method into the callback function, and now everything goes well.
2022-10-15 04:58 AM
> the root-cause was actually that I directly read capture-compare register value in a function, called in the main loop
Nice catch! Glad you got it going.
JW
2024-09-12 12:31 AM
Unable to capture falling and rising edge for dmx512 please help it is urgent code:
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <stdio.h>
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim3;
UART_HandleTypeDef huart1;
UART_HandleTypeDef huart2;
/* USER CODE BEGIN PV */
// Global variables to store captured values and flags
// Global Variables
uint32_t GlobalOverflowCount = 0;
uint32_t BreakOverflowCount = 0;
uint32_t TimingCounterRx = 0;
uint32_t MABRisingCounterRx = 0;
uint32_t BreakFallingCounterRx = 0;
uint32_t NextBreakFallingCounterRx = 0;
uint8_t DMXChannelCount = 0;
uint8_t PacketFlag = 0;
uint8_t InitBreakFlagRX = 0;
uint8_t DataCorruptFlag = 0;
uint8_t MABFlag = 0;
uint8_t BreakFlag = 0;
uint8_t dmxBuffer[512]; // DMX data buffer for 512 channels
int dmxDataReady = 0;
#define MAB_TIME 12 // Example value, adjust as needed
#define BREAK_TIME 88 // Example value, adjust as needed
#define DMX_PACKET_TIME 500 // Example value, adjust as needed
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_ADC1_Init(void);
static void MX_TIM1_Init(void);
static void MX_TIM3_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_USART2_UART_Init(void);
/* USER CODE BEGIN PFP */
// Function prototypes
void ProcessDMXPacket(void);
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
// MX_ADC1_Init();
MX_TIM1_Init();
MX_TIM3_Init();
// MX_USART1_UART_Init();
// MX_USART2_UART_Init();
/* USER CODE BEGIN 2 */
// Start timers for input capture and PWM
HAL_TIM_IC_Start_IT(&htim1, TIM_CHANNEL_1); // Falling edge on PA0
HAL_TIM_IC_Start_IT(&htim1, TIM_CHANNEL_2); // Rising edge on PA1
// HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_1); // PWM on PA6
// HAL_UART_Receive_IT(&huart1, dmxBuffer, 512);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
if (PacketFlag) {
// Process received DMX512 packet
ProcessDMXPacket();
PacketFlag = 0; // Reset after processing
}
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSIDiv = RCC_HSI_DIV1;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief ADC1 Initialization Function
* @PAram None
* @retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
hadc1.Init.LowPowerAutoWait = DISABLE;
hadc1.Init.LowPowerAutoPowerOff = DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.DMAContinuousRequests = DISABLE;
hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED;
hadc1.Init.SamplingTimeCommon1 = ADC_SAMPLETIME_1CYCLE_5;
hadc1.Init.SamplingTimeCommon2 = ADC_SAMPLETIME_1CYCLE_5;
hadc1.Init.OversamplingMode = DISABLE;
hadc1.Init.TriggerFrequencyMode = ADC_TRIGGER_FREQ_HIGH;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_4;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLINGTIME_COMMON_1;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
static void MX_TIM1_Init(void)
{
/* USER CODE BEGIN TIM1_Init 0 */
/* USER CODE END TIM1_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_IC_InitTypeDef sConfigIC = {0};
/* USER CODE BEGIN TIM1_Init 1 */
/* USER CODE END TIM1_Init 1 */
htim1.Instance = TIM1;
htim1.Init.Prescaler = 48-1;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 88;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_IC_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_FALLING;
sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
sConfigIC.ICFilter = 0;
if (HAL_TIM_IC_ConfigChannel(&htim1, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
if (HAL_TIM_IC_ConfigChannel(&htim1, &sConfigIC, TIM_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM1_Init 2 */
/* USER CODE END TIM1_Init 2 */
}
/**
* @brief TIM3 Initialization Function
* @PAram None
* @retval None
*/
static void MX_TIM3_Init(void)
{
/* USER CODE BEGIN TIM3_Init 0 */
/* USER CODE END TIM3_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM3_Init 1 */
/* USER CODE END TIM3_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 0;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 65535;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_4) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM3_Init 2 */
/* USER CODE END TIM3_Init 2 */
HAL_TIM_MspPostInit(&htim3);
}
/**
* @brief USART1 Initialization Function
* @PAram None
* @retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 250000;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_2;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart1.Init.ClockPrescaler = UART_PRESCALER_DIV1;
huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_RS485Ex_Init(&huart1, UART_DE_POLARITY_HIGH, 0, 0) != HAL_OK)
{
Error_Handler();
}
if (HAL_UARTEx_SetTxFifoThreshold(&huart1, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
{
Error_Handler();
}
if (HAL_UARTEx_SetRxFifoThreshold(&huart1, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
{
Error_Handler();
}
if (HAL_UARTEx_DisableFifoMode(&huart1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
/**
* @brief USART2 Initialization Function
* @PAram None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart2.Init.ClockPrescaler = UART_PRESCALER_DIV1;
huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @PAram None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LAMP_COUNT_GPIO_Port, LAMP_COUNT_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : LAMP_COUNT_Pin */
GPIO_InitStruct.Pin = LAMP_COUNT_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LAMP_COUNT_GPIO_Port, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
// Timer2 Rising Edge Interrupt Callback
void ProcessDMXPacket(void) {
// Check for valid DMX packet and process data
if (DMXChannelCount > 0 && DMXChannelCount <= 512) {
// Example: Log or use the DMX data
for (int i = 0; i < DMXChannelCount; i++) {
// Example: Process DMX data
printf("Channel %d: %d\n", i + 1, dmxBuffer[i]);
}
}
DMXChannelCount = 0; // Reset for the next packet
}
//void ProcessDMXPacket(void) {
// // Check for valid DMX packet and process data
// if (DMXChannelCount > 0 && DMXChannelCount <= 512) {
// // Example: Log or use the DMX data
// for (int i = 0; i < DMXChannelCount; i++) {
// // Example: Process DMX data
// printf("Channel %d: %d\n", i + 1, dmxBuffer[i]);
// }
// }
// DMXChannelCount = 0; // Reset for the next packet
//}
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim) {
if (htim->Instance == TIM1) {
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1) { // Falling edge
HAL_TIM_IC_Stop_IT(htim, TIM_CHANNEL_1); // Disable interrupt
MABRisingCounterRx = __HAL_TIM_GET_COUNTER(htim); // Capture counter
TimingCounterRx = MABRisingCounterRx - BreakFallingCounterRx;
TimingCounterRx += GlobalOverflowCount;
if (BreakFlag && TimingCounterRx > MAB_TIME) {
MABFlag = 1;
BreakFlag = 0;
} else {
GlobalOverflowCount = 0;
BreakFlag = 0;
InitBreakFlagRX = 0;
}
}
else if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2) { // Rising edge
HAL_TIM_IC_Stop_IT(htim, TIM_CHANNEL_2); // Disable interrupt
if (InitBreakFlagRX) {
TimingCounterRx = NextBreakFallingCounterRx - MABRisingCounterRx;
TimingCounterRx += GlobalOverflowCount;
if (TimingCounterRx > BREAK_TIME) {
BreakFlag = 1;
InitBreakFlagRX = 0;
GlobalOverflowCount -= BreakOverflowCount;
if (TimingCounterRx > DMX_PACKET_TIME) {
PacketFlag = 1;
}
} else {
DataCorruptFlag = 1;
}
}
else {
MABRisingCounterRx = __HAL_TIM_GET_COUNTER(htim);
TimingCounterRx = MABRisingCounterRx - BreakFallingCounterRx;
if (TimingCounterRx > BREAK_TIME) {
BreakFlag = 1;
InitBreakFlagRX = 1;
BreakOverflowCount = GlobalOverflowCount;
}
}
}
}
}
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
if (htim->Instance == TIM1) {
GlobalOverflowCount++; // Handle overflow for timer counting
}
}
// Callback
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) {
if (huart->Instance == USART1) {
// Process received data
// Restart receiving process
HAL_UART_Receive_IT(&huart1, dmxBuffer, 512);
PacketFlag = 1; // Set flag to process DMX packet
}
}
//void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) {
// if (huart->Instance == USART1) {
// uint8_t StatusReadFlag = __HAL_UART_GET_FLAG(huart, UART_FLAG_FE | UART_FLAG_RXNE);
//
// if (StatusReadFlag & UART_FLAG_FE) { // Framing Error detected
// if (!BreakFlag && !MABFlag) {
// BreakFallingCounterRx = __HAL_TIM_GET_COUNTER(&htim1);
// HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_2); // Enable rising edge interrupt
// } else if (MABFlag) {
// NextBreakFallingCounterRx = __HAL_TIM_GET_COUNTER(&htim2);
// BreakOverflowCount = GlobalOverflowCount;
// HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_2);
// }
// } else if (StatusReadFlag & UART_FLAG_RXNE && MABFlag && !DataCorruptFlag) {
// uint8_t receivedData;
// HAL_UART_Receive(&huart1, &receivedData, 1, HAL_MAX_DELAY);
//
// if (DMXChannelCount == 0) {
// if (receivedData == 0) {
// DMXChannelCount++;
// } else {
// MABFlag = 0;
// InitBreakFlagRX = 0;
// GlobalOverflowCount = 0;
// }
// } else if (DMXChannelCount < 512) {
// DMXChannelCount++;
// // Store received data for further processing
// }
// }
// }
//}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */