2024-07-19 06:23 PM
Hi, i'm using my Nucleo STM32F401RE as a HID Device for a MIDI Keyboard project
I have configured the following:
Connectivity --> USB_OTG_FS --> Device Only
Middleware --> USB_DEVICE --> Human Interface Device
I followed a video tutorial to configure the USB MIDI Descriptor in the file usbd_hid.c and it worked, my notebook detects my Nucleo as a USB Device and I have made a code to send only MIDI Note On and Note Off messages up to now, when pushing the Nucleo switch.
The problem comes when trying to use a potentiometer to send Control Change messages. I tried to use the ADC with interrupt and with DMA but when i use it, my notebook fails to detect the board as a USB
If i comment the line that initializes the ADC (HAL_ADC_Start_DMA) it works, but when uncommenting it again the ADC works fine but the HID doesn't
I'm not sure if i have an issue with the configuration of the ADC or USB or if maybe they are incompatible
The code in the main.c is the following:
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "usb_device.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "usbd_hid.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;
/* USER CODE BEGIN PV */
extern USBD_HandleTypeDef hUsbDeviceFS;
//MIDI Message arrays: 4 Bytes
uint8_t midiNoteOn[4];
uint8_t midiNoteOff[4];
uint8_t botonEstadoActual = 0;
uint8_t botonEstadoAnterior = 0;
uint8_t botonTimeOut = 10;
uint8_t lastDebounceTime = 0;
uint8_t botonTimer = 0;
uint16_t adc_val = 0;
uint32_t buffer = 0;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC1_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
//NOTE ON MESSAGE
//Header Byte (Solo para MIDI USB)
midiNoteOn[0] = 0x09; //Cable Number 0 (puede ser de 0 a F), el 9 es el Codigo (CIN) de NoteOn
//Status Byte (El primer Nibble es el comando (NoteOn) y el segundo el Canal
midiNoteOn[1] = 0x90; //9 es para NoteOn y 0 es el Canal 0
//Data Byte 1 --> Es el numero de nota, valor entre 0 y 127 pues el MSB de un data byte siempre es 0
midiNoteOn[2] = 0x40; //0x40 es 64
//Data Byte 2 --> Es la velocidad, la dejamos en un valor constante por no medirla
midiNoteOn[3] = 0x7F; //0x7F es 127, ponemos el maximo
//NOTE OFF MESSAGE
//Header Byte (Solo para MIDI USB)
midiNoteOff[0] = 0x08; //Cable Number 0 (puede ser de 0 a F), el 8 es el Codigo (CIN) de NoteOff
//Status Byte (El primer Nibble es el comando (NoteOn) y el segundo el Canal
midiNoteOff[1] = 0x80; //8 es para NoteOff y 0 es el Canal 0
//Data Byte 1 --> Es el numero de nota, valor entre 0 y 127 pues el MSB de un data byte siempre es 0
midiNoteOff[2] = 0x40; //0x40 es 64
//Data Byte 2 --> Es la velocidad, la dejamos en un valor constante por no medirla
midiNoteOff[3] = 0x7F; //0x7F es 127, ponemos el maximo
uint8_t retorno = 0;
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_USB_DEVICE_Init();
MX_ADC1_Init();
/* USER CODE BEGIN 2 */
HAL_ADC_Start_DMA(&hadc1, &buffer, 1);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
botonEstadoActual = HAL_GPIO_ReadPin(Boton_GPIO_Port, Boton_Pin);
botonTimer = HAL_GetTick() - lastDebounceTime;
if(botonTimer > botonTimeOut)
{
if(botonEstadoActual != botonEstadoAnterior)
{
lastDebounceTime = HAL_GetTick();
if(botonEstadoActual == 0)
{
//midiNoteOn[2] = (buffer*127)/4096;
//midiNoteOff[2] = (buffer*127)/4096;
while(((USBD_HID_HandleTypeDef *)hUsbDeviceFS.pClassData)->state==USBD_HID_BUSY)
{
}
retorno = USBD_HID_SendReport(&hUsbDeviceFS,midiNoteOn,4);
if(retorno == 0)
HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_SET);
}
else
{
while(((USBD_HID_HandleTypeDef *)hUsbDeviceFS.pClassData)->state==USBD_HID_BUSY)
{
}
retorno = USBD_HID_SendReport(&hUsbDeviceFS,midiNoteOff,4);
if(retorno == 0)
HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET);
}
botonEstadoAnterior = botonEstadoActual;
}
}
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 4;
RCC_OscInitStruct.PLL.PLLN = 72;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
RCC_OscInitStruct.PLL.PLLQ = 3;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief ADC1 Initialization Function
* @PAram None
* @retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = ENABLE;
hadc1.Init.ContinuousConvMode = ENABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DMAContinuousRequests = ENABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA2_CLK_ENABLE();
/* DMA interrupt init */
/* DMA2_Stream0_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn);
}
/**
* @brief GPIO Initialization Function
* @PAram None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : Boton_Pin */
GPIO_InitStruct.Pin = Boton_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(Boton_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : USART_TX_Pin USART_RX_Pin */
GPIO_InitStruct.Pin = USART_TX_Pin|USART_RX_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF7_USART2;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : LD2_Pin */
GPIO_InitStruct.Pin = LD2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LD2_GPIO_Port, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @PAram file: pointer to the source file name
* @PAram line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
I hope someone can give me a hand!
Thank you!
Solved! Go to Solution.
2024-07-19 06:36 PM
> sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
You're swamping the system with ADC interrupts so the USB doesn't have time to respond. Increase the sampling time to max and/or increase the number of samples you take before calling the ADC half/complete callbacks.
2024-07-19 06:36 PM
> sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
You're swamping the system with ADC interrupts so the USB doesn't have time to respond. Increase the sampling time to max and/or increase the number of samples you take before calling the ADC half/complete callbacks.
2024-07-19 07:21 PM
Hi TDK!
Thank you so much, it worked!
It's my first time working with USB so I wasn't aware that a high sampling frequency could affect the USB response
Greetings!