cancel
Showing results for 
Search instead for 
Did you mean: 

generation of 3 digital signal at at time in STM32L476

saurabhkore
Associate III

Hello, I am working on the STM32L476RG MCU, where I first measure the angle using the atan2 function and then convert this measured angle into UVW signals.

As we know, UVW signals are digital in nature, switching high/low based on conditions specified in the code. For this, I used digital pins 8, 9, and 10 as GPIO output pins.

However, I observed that pins 9 and 10 provide the expected output, but pin 8 remains constantly high.

Why is this happening? I am sharing my code with you—please check it once

 

 

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
ADC_HandleTypeDef hadc2;

DAC_HandleTypeDef hdac1;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
void PeriphCommonClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_ADC1_Init(void);
static void MX_ADC2_Init(void);
static void MX_DAC1_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{

  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* Configure the peripherals common clocks */
  PeriphCommonClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_ADC1_Init();
  MX_ADC2_Init();
  MX_DAC1_Init();
  /* USER CODE BEGIN 2 */
  HAL_DAC_Start(&hdac1, DAC_CHANNEL_1);

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */
	                      HAL_ADC_Start(&hadc1);
	                      HAL_ADC_PollForConversion(&hadc2, 1);
	                      raw_sin=HAL_ADC_GetValue(&hadc1);
	                      HAL_ADC_Stop(&hadc1);

	  	  	  	          HAL_ADC_Start(&hadc2);
	  	  	  	    	  HAL_ADC_PollForConversion(&hadc1, 1);
	  	  	  	    	  raw_cosin=HAL_ADC_GetValue(&hadc2);
	  	  	  	    	  HAL_ADC_Stop(&hadc2);

	  	  	  	    	  vsin=(raw_sin*(3.3/4095)-1.721);
	  	  	  	    	  vcos=(raw_cosin*(3.3/4095)-1.7465);

	  	  	  	    	  angle=atan2(vsin,vcos);
	  	  	  	    	  angle=angle*(180.0f/M_PI);
	  	  	  	    	  if(angle < 0)
	  	  	  	    	  angle+=180;
	  	  	  	    	  dac_val=(uint32_t)((angle/180)*4095.0f);
	  	  	  	    	 HAL_DAC_SetValue(&hdac1, DAC_CHANNEL_1, DAC_ALIGN_12B_R, dac_val);
//for(angle=0;angle<360;angle++)
//{
	  	  	  	    	  if(angle >=0 && angle <60)
	  	  	  	    	  {
	  	  	  	    		  HAL_GPIO_WritePin(UVW_PORT, U_PIN, 1);
	  	  	  	    		  HAL_GPIO_WritePin(UVW_PORT, V_PIN, 0);
	  	  	  	    		  HAL_GPIO_WritePin(UVW_PORT, W_PIN, 1);
	  	  	  	    	  }
	  	  	  	    	  else if(angle >= 60 && angle <120)
	  	  	  	    	  {
	  	  	  	    		  HAL_GPIO_WritePin(UVW_PORT, U_PIN, 1);
	  	  	  	    		  HAL_GPIO_WritePin(UVW_PORT, V_PIN, 0);
	  	  	  	    		  HAL_GPIO_WritePin(UVW_PORT, W_PIN, 0);
	  	  	  	    	  }
	  	  	  	    	  else if(angle >= 120 && angle <180)
	  	  	  	    	  {
	  	  	  	    		  HAL_GPIO_WritePin(UVW_PORT, U_PIN, 1);
	  	  	  	    		  HAL_GPIO_WritePin(UVW_PORT, V_PIN, 1);
	  	  	  	    		  HAL_GPIO_WritePin(UVW_PORT, W_PIN, 0);
	  	  	  	    	  }
	  	  	  	    	  else if(angle >= 180 && angle <240)
	  	  	  	    	  {
	  	  	  	    		  HAL_GPIO_WritePin(UVW_PORT, U_PIN, 0);
	  	  	  	    		  HAL_GPIO_WritePin(UVW_PORT, V_PIN, 1);
	  	  	  	    		  HAL_GPIO_WritePin(UVW_PORT, W_PIN, 0);
	  	  	  	    	  }
	  	  	  	    	  else if(angle >= 240 && angle <300)
	  	  	  	    	  {
	  	  	  	    		  HAL_GPIO_WritePin(UVW_PORT, U_PIN, 0);
	  	  	  	    		  HAL_GPIO_WritePin(UVW_PORT, V_PIN, 1);
	  	  	  	    		  HAL_GPIO_WritePin(UVW_PORT, W_PIN, 1);
	  	  	  	    	  }
	  	  	  	    	  else if(angle >= 300 && angle <360)
	  	  	  	    	  {
	  	  	  	    		  HAL_GPIO_WritePin(UVW_PORT, U_PIN, 0);
	  	  	  	    		  HAL_GPIO_WritePin(UVW_PORT, V_PIN, 0);
	  	  	  	    		  HAL_GPIO_WritePin(UVW_PORT, W_PIN, 1);
	  	  	  	    	  }


}
	/*if (angle >= 0 && angle < 60) {
	        GPIOA->BSRR = (1U <<  | (1U << (10));  // U = HIGH, W = HIGH
	        GPIOA->BSRR = (1U << (9 + 16));          // V = LOW
	    }
	    else if (angle >= 60 && angle < 120) {
	        GPIOA->BSRR = (1U << 8);  // U = HIGH
	        GPIOA->BSRR = (1U << (9 + 16)) | (1U << (10 + 16)); // V = LOW, W = LOW
	    }
	    else if (angle >= 120 && angle < 180) {
	        GPIOA->BSRR = (1U <<  | (1U << 9);  // U = HIGH, V = HIGH
	        GPIOA->BSRR = (1U << (10 + 16));      // W = LOW
	    }
	    else if (angle >= 180 && angle < 240) {
	        GPIOA->BSRR = (1U << 9);  // V = HIGH
	        GPIOA->BSRR = (1U << (8 + 16)) | (1U << (10 + 16)); // U = LOW, W = LOW
	    }
	    else if (angle >= 240 && angle < 300) {
	        GPIOA->BSRR = (1U << 9) | (1U << 10);  // V = HIGH, W = HIGH
	        GPIOA->BSRR = (1U << (8 + 16));        // U = LOW
	    }
	    else if (angle >= 300 && angle < 360) {
	        GPIOA->BSRR = (1U << 10);  // W = HIGH
	        GPIOA->BSRR = (1U << (8 + 16)) | (1U << (9 + 16)); // U = LOW, V = LOW
	    }*/


    /* USER CODE BEGIN 3 */

  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLM = 1;
  RCC_OscInitStruct.PLL.PLLN = 10;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7;
  RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
  RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief Peripherals Common Clock Configuration
  * @retval None
  */
void PeriphCommonClock_Config(void)
{
  RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};

  /** Initializes the peripherals clock
  */
  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
  PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_PLLSAI1;
  PeriphClkInit.PLLSAI1.PLLSAI1Source = RCC_PLLSOURCE_HSI;
  PeriphClkInit.PLLSAI1.PLLSAI1M = 1;
  PeriphClkInit.PLLSAI1.PLLSAI1N = 8;
  PeriphClkInit.PLLSAI1.PLLSAI1P = RCC_PLLP_DIV7;
  PeriphClkInit.PLLSAI1.PLLSAI1Q = RCC_PLLQ_DIV2;
  PeriphClkInit.PLLSAI1.PLLSAI1R = RCC_PLLR_DIV2;
  PeriphClkInit.PLLSAI1.PLLSAI1ClockOut = RCC_PLLSAI1_ADC1CLK;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief ADC1 Initialization Function
  *  None
  * @retval None
  */
static void MX_ADC1_Init(void)
{

  /* USER CODE BEGIN ADC1_Init 0 */

  /* USER CODE END ADC1_Init 0 */

  ADC_MultiModeTypeDef multimode = {0};
  ADC_ChannelConfTypeDef sConfig = {0};

  /* USER CODE BEGIN ADC1_Init 1 */

  /* USER CODE END ADC1_Init 1 */

  /** Common config
  */
  hadc1.Instance = ADC1;
  hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
  hadc1.Init.Resolution = ADC_RESOLUTION_12B;
  hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
  hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  hadc1.Init.LowPowerAutoWait = DISABLE;
  hadc1.Init.ContinuousConvMode = ENABLE;
  hadc1.Init.NbrOfConversion = 1;
  hadc1.Init.DiscontinuousConvMode = DISABLE;
  hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  hadc1.Init.DMAContinuousRequests = DISABLE;
  hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED;
  hadc1.Init.OversamplingMode = DISABLE;
  if (HAL_ADC_Init(&hadc1) != HAL_OK)
  {
    Error_Handler();
  }

  /** Configure the ADC multi-mode
  */
  multimode.Mode = ADC_MODE_INDEPENDENT;
  if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK)
  {
    Error_Handler();
  }

  /** Configure Regular Channel
  */
  sConfig.Channel = ADC_CHANNEL_5;
  sConfig.Rank = ADC_REGULAR_RANK_1;
  sConfig.SamplingTime = ADC_SAMPLETIME_2CYCLES_5;
  sConfig.SingleDiff = ADC_SINGLE_ENDED;
  sConfig.OffsetNumber = ADC_OFFSET_NONE;
  sConfig.Offset = 0;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN ADC1_Init 2 */

  /* USER CODE END ADC1_Init 2 */

}

/**
  * @brief ADC2 Initialization Function
  *  None
  * @retval None
  */
static void MX_ADC2_Init(void)
{

  /* USER CODE BEGIN ADC2_Init 0 */

  /* USER CODE END ADC2_Init 0 */

  ADC_ChannelConfTypeDef sConfig = {0};

  /* USER CODE BEGIN ADC2_Init 1 */

  /* USER CODE END ADC2_Init 1 */

  /** Common config
  */
  hadc2.Instance = ADC2;
  hadc2.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
  hadc2.Init.Resolution = ADC_RESOLUTION_12B;
  hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc2.Init.ScanConvMode = ADC_SCAN_DISABLE;
  hadc2.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  hadc2.Init.LowPowerAutoWait = DISABLE;
  hadc2.Init.ContinuousConvMode = ENABLE;
  hadc2.Init.NbrOfConversion = 1;
  hadc2.Init.DiscontinuousConvMode = DISABLE;
  hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  hadc2.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  hadc2.Init.DMAContinuousRequests = DISABLE;
  hadc2.Init.Overrun = ADC_OVR_DATA_PRESERVED;
  hadc2.Init.OversamplingMode = DISABLE;
  if (HAL_ADC_Init(&hadc2) != HAL_OK)
  {
    Error_Handler();
  }

  /** Configure Regular Channel
  */
  sConfig.Channel = ADC_CHANNEL_6;
  sConfig.Rank = ADC_REGULAR_RANK_1;
  sConfig.SamplingTime = ADC_SAMPLETIME_2CYCLES_5;
  sConfig.SingleDiff = ADC_SINGLE_ENDED;
  sConfig.OffsetNumber = ADC_OFFSET_NONE;
  sConfig.Offset = 0;
  if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN ADC2_Init 2 */

  /* USER CODE END ADC2_Init 2 */

}

/**
  * @brief DAC1 Initialization Function
  *  None
  * @retval None
  */
static void MX_DAC1_Init(void)
{

  /* USER CODE BEGIN DAC1_Init 0 */

  /* USER CODE END DAC1_Init 0 */

  DAC_ChannelConfTypeDef sConfig = {0};

  /* USER CODE BEGIN DAC1_Init 1 */

  /* USER CODE END DAC1_Init 1 */

  /** DAC Initialization
  */
  hdac1.Instance = DAC1;
  if (HAL_DAC_Init(&hdac1) != HAL_OK)
  {
    Error_Handler();
  }

  /** DAC channel OUT1 config
  */
  sConfig.DAC_SampleAndHold = DAC_SAMPLEANDHOLD_DISABLE;
  sConfig.DAC_Trigger = DAC_TRIGGER_NONE;
  sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;
  sConfig.DAC_ConnectOnChipPeripheral = DAC_CHIPCONNECT_ENABLE;
  sConfig.DAC_UserTrimming = DAC_TRIMMING_FACTORY;
  if (HAL_DAC_ConfigChannel(&hdac1, &sConfig, DAC_CHANNEL_1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN DAC1_Init 2 */

  /* USER CODE END DAC1_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  *  None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOH_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();


  /*Configure GPIO pin Output Level */
//  HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8|GPIO_PIN_9|GPIO_PIN_10, GPIO_PIN_RESET);


  /*Configure GPIO pins : PA8 PA9 PA10 */
  GPIO_InitStruct.Pin = GPIO_PIN_8|GPIO_PIN_9|GPIO_PIN_10;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  HAL_GPIO_WritePin(UVW_PORT, U_PIN, GPIO_PIN_RESET);
  HAL_GPIO_WritePin(UVW_PORT, V_PIN, GPIO_PIN_RESET);
  HAL_GPIO_WritePin(UVW_PORT, W_PIN, GPIO_PIN_RESET);
  // Enable GPIOA clock
  RCC->AHB2ENR |= RCC_AHB2ENR_GPIOAEN;

//  // Set PA8, PA9, PA10 as outputs
//  GPIOA->MODER &= ~(3U << (8 * 2));  // Clear bits for PA8
//  GPIOA->MODER |= (1U << (8 * 2));   // Set as output
//
//  GPIOA->MODER &= ~(3U << (9 * 2));
//  GPIOA->MODER |= (1U << (9 * 2));
//
//  GPIOA->MODER &= ~(3U << (10 * 2));
//  GPIOA->MODER |= (1U << (10 * 2));
//
//  GPIOA->BSRR =(1U <<(8+16)) | (1U <<(9+16)) | (1U << (10+16));

/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  *   file: pointer to the source file name
  *   line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

 

 

5 REPLIES 5
TDK
Guru

HAL_GPIO_WritePin is the correct call to change the value of an output pin. There are a few possibilities here:

  • You're not monitoring what you think you are monitoring. (i.e. PA8 isn't hooked up to your scope or whatever you're using to monitor). You can recheck wiring, or look at ODR and IDR registers directly instead to get the ultimate answer. The 8th IDR bit should follow the 8th ODR bit.
  • PA8 is being held high by something else. This isn't the case on the Nucleo board, guessing that's what you're using.
If you feel a post has answered your question, please click "Accept as Solution".
saurabhkore
Associate III

Sir, I have checked everything as you suggested, but the problem still persists.

Write to that pin in the code before the loop and check that the output can switch level.

Set a breakpoint at the place in the loop where you expect the pin to be switched and check if your code hits this breakpoint.

hth

KnarfB 

Hi sir, as per your suggestion, I implemented the code. Before the loop, I reset all pins and also applied a breakpoint. I observed that two pins are working fine, but the U pin is always high and does not change at any point.

Maybe the pin is damaged.

Show the contents of the GPIOA registers after setting all 3 pins push-pull output and output high.

If you feel a post has answered your question, please click "Accept as Solution".