2024-02-14 12:05 PM
Hi all,
I wanted to make a post to shine some light on how to configure the HRTIM DMA on the STM32F3348-DISCO (and probably other ICs w/ HRTIM capabilities).
A few posts I've seen have boasted the same solution, but have convoluted the use of a single DMA request, Burst DMA requests and general Burst Mode configuration using the HRTIM. Here I'll try and walk through a step-by-step CubeMX and main.c configuration to step through a sine table with a circular DMA request to create a high frequency PWM sine wave using HRTIM1. Some basic knowledge of the ST Cube suite is assumed.
Hooking an oscilloscope up to PB14 (on STM32F3348-DISCO) you should see a PWM wave with a frequency of 100kHz changing duty cycle rapidly.
Hopefully this helps clarify some of the ambiguity of configuring the HRTIM. I'm excited to go further and sync some basic sampling with a few of the ADCs on the chip.
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
//DEFINING THE NUMBER OF SAMPLES/STEPS IN SINE WAVE
#define NS 128
//DEFINING THE PERIOD OF THE PWM
#define PERIOD 46080 //100kHz
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
HRTIM_HandleTypeDef hhrtim1;
DMA_HandleTypeDef hdma_hrtim1_d;
/* USER CODE BEGIN PV */
uint32_t signal[NS] = {
23040, 24171, 25298, 26421, 27535, 28638, 29728, 30802, 31857, 32891, 33901, 34885,
35840, 36765, 37656, 38513, 39332, 40112, 40850, 41546, 42197, 42802, 43359, 43868,
44326, 44733, 45088, 45390, 45637, 45831, 45969, 46052, 46080, 46052, 45969, 45831,
45637, 45390, 45088, 44733, 44326, 43868, 43359, 42802, 42197, 41546, 40850, 40112,
39332, 38513, 37656, 36765, 35840, 34885, 33901, 32891, 31857, 30802, 29728, 28638,
27535, 26421, 25298, 24171, 23040, 21909, 20782, 19659, 18545, 17442, 16352, 15278,
14223, 13189, 12179, 11195, 10240, 9315, 8424, 7567, 6748, 5968, 5230, 4534,
3883, 3278, 2721, 2212, 1754, 1347, 992, 690, 443, 249, 111, 28,
0, 28, 111, 249, 443, 690, 992, 1347, 1754, 2212, 2721, 3278,
3883, 4534, 5230, 5968, 6748, 7567, 8424, 9315, 10240, 11195, 12179, 13189,
14223, 15278, 16352, 17442, 18545, 19659, 20782, 21909};
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_HRTIM1_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_HRTIM1_Init();
/* USER CODE BEGIN 2 */
// STARTING WAVEFORM OUTPUT ON HRTIM D1 (PIN B14)
HAL_HRTIM_WaveformOutputStart(&hhrtim1, HRTIM_OUTPUT_TD1);
// START HRTIM COUNTER + CIRCULAR DMA TRANSFER TO HRTIM D COMP1
HAL_HRTIM_WaveformCountStart_DMA(&hhrtim1, HRTIM_TIMERID_TIMER_D);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_HRTIM1;
PeriphClkInit.Hrtim1ClockSelection = RCC_HRTIM1CLK_PLLCLK;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief HRTIM1 Initialization Function
* @PAram None
* @retval None
*/
static void MX_HRTIM1_Init(void)
{
/* USER CODE BEGIN HRTIM1_Init 0 */
/* USER CODE END HRTIM1_Init 0 */
HRTIM_TimeBaseCfgTypeDef pTimeBaseCfg = {0};
HRTIM_TimerCfgTypeDef pTimerCfg = {0};
HRTIM_CompareCfgTypeDef pCompareCfg = {0};
HRTIM_OutputCfgTypeDef pOutputCfg = {0};
/* USER CODE BEGIN HRTIM1_Init 1 */
/* USER CODE END HRTIM1_Init 1 */
hhrtim1.Instance = HRTIM1;
hhrtim1.Init.HRTIMInterruptResquests = HRTIM_IT_NONE;
hhrtim1.Init.SyncOptions = HRTIM_SYNCOPTION_NONE;
if (HAL_HRTIM_Init(&hhrtim1) != HAL_OK)
{
Error_Handler();
}
if (HAL_HRTIM_DLLCalibrationStart(&hhrtim1, HRTIM_CALIBRATIONRATE_14) != HAL_OK)
{
Error_Handler();
}
if (HAL_HRTIM_PollForDLLCalibration(&hhrtim1, 10) != HAL_OK)
{
Error_Handler();
}
pTimeBaseCfg.Period = PERIOD;
pTimeBaseCfg.RepetitionCounter = 0x00;
pTimeBaseCfg.PrescalerRatio = HRTIM_PRESCALERRATIO_MUL32;
pTimeBaseCfg.Mode = HRTIM_MODE_CONTINUOUS;
if (HAL_HRTIM_TimeBaseConfig(&hhrtim1, HRTIM_TIMERINDEX_TIMER_D, &pTimeBaseCfg) != HAL_OK)
{
Error_Handler();
}
pTimerCfg.InterruptRequests = HRTIM_TIM_IT_NONE;
pTimerCfg.DMARequests = HRTIM_TIM_DMA_REP;
pTimerCfg.DMASrcAddress = (uint32_t)&signal[0];
pTimerCfg.DMADstAddress = (uint32_t)&(hhrtim1).Instance->sTimerxRegs[(HRTIM_TIMERINDEX_TIMER_D)].CMP1xR;
pTimerCfg.DMASize = NS;
pTimerCfg.HalfModeEnable = HRTIM_HALFMODE_DISABLED;
pTimerCfg.StartOnSync = HRTIM_SYNCSTART_DISABLED;
pTimerCfg.ResetOnSync = HRTIM_SYNCRESET_DISABLED;
pTimerCfg.DACSynchro = HRTIM_DACSYNC_NONE;
pTimerCfg.PreloadEnable = HRTIM_PRELOAD_ENABLED;
pTimerCfg.UpdateGating = HRTIM_UPDATEGATING_INDEPENDENT;
pTimerCfg.BurstMode = HRTIM_TIMERBURSTMODE_MAINTAINCLOCK;
pTimerCfg.RepetitionUpdate = HRTIM_UPDATEONREPETITION_ENABLED;
pTimerCfg.PushPull = HRTIM_TIMPUSHPULLMODE_DISABLED;
pTimerCfg.FaultEnable = HRTIM_TIMFAULTENABLE_NONE;
pTimerCfg.FaultLock = HRTIM_TIMFAULTLOCK_READWRITE;
pTimerCfg.DeadTimeInsertion = HRTIM_TIMDEADTIMEINSERTION_DISABLED;
pTimerCfg.DelayedProtectionMode = HRTIM_TIMER_D_E_DELAYEDPROTECTION_DISABLED;
pTimerCfg.UpdateTrigger = HRTIM_TIMUPDATETRIGGER_NONE;
pTimerCfg.ResetTrigger = HRTIM_TIMRESETTRIGGER_NONE;
pTimerCfg.ResetUpdate = HRTIM_TIMUPDATEONRESET_DISABLED;
if (HAL_HRTIM_WaveformTimerConfig(&hhrtim1, HRTIM_TIMERINDEX_TIMER_D, &pTimerCfg) != HAL_OK)
{
Error_Handler();
}
pCompareCfg.CompareValue = PERIOD/2;
if (HAL_HRTIM_WaveformCompareConfig(&hhrtim1, HRTIM_TIMERINDEX_TIMER_D, HRTIM_COMPAREUNIT_1, &pCompareCfg) != HAL_OK)
{
Error_Handler();
}
pOutputCfg.Polarity = HRTIM_OUTPUTPOLARITY_HIGH;
pOutputCfg.SetSource = HRTIM_OUTPUTSET_TIMPER;
pOutputCfg.ResetSource = HRTIM_OUTPUTRESET_TIMCMP1;
pOutputCfg.IdleMode = HRTIM_OUTPUTIDLEMODE_NONE;
pOutputCfg.IdleLevel = HRTIM_OUTPUTIDLELEVEL_INACTIVE;
pOutputCfg.FaultLevel = HRTIM_OUTPUTFAULTLEVEL_NONE;
pOutputCfg.ChopperModeEnable = HRTIM_OUTPUTCHOPPERMODE_DISABLED;
pOutputCfg.BurstModeEntryDelayed = HRTIM_OUTPUTBURSTMODEENTRY_REGULAR;
if (HAL_HRTIM_WaveformOutputConfig(&hhrtim1, HRTIM_TIMERINDEX_TIMER_D, HRTIM_OUTPUT_TD1, &pOutputCfg) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN HRTIM1_Init 2 */
/* USER CODE END HRTIM1_Init 2 */
HAL_HRTIM_MspPostInit(&hhrtim1);
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Channel6_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn);
}
/**
* @brief GPIO Initialization Function
* @PAram None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOF_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, LD_U_Pin|LD_D_Pin|LD_L_Pin|LD_R_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : B1_Pin */
GPIO_InitStruct.Pin = B1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_EVT_RISING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : Vin_Sense_Pin Vout_Sense_Pin */
GPIO_InitStruct.Pin = Vin_Sense_Pin|Vout_Sense_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : BK_Sense_Pin */
GPIO_InitStruct.Pin = BK_Sense_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(BK_Sense_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : LD_U_Pin LD_D_Pin LD_L_Pin LD_R_Pin */
GPIO_InitStruct.Pin = LD_U_Pin|LD_D_Pin|LD_L_Pin|LD_R_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @PAram file: pointer to the source file name
* @PAram line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */