cancel
Showing results for 
Search instead for 
Did you mean: 

STM32F4 with an ADAFRUIT BLE SPI

Paulo971
Associate III
Hello st community,
I'm trying to set up a bleutooth communication between my phone and my stm32 with the Adafruit module in SPI communication, but I'm having a problem.

When I use my arduino and the demo code it works perfectly but when I connect to my stm32 and do my code based on the demo code I have a problem during the factory reset, the module shuts down and I can't see the ble module on my phone.

I have checked my wires 3 times and also the power supply provided by the nucleo I have the 3.3V

I use doclight to monitor uart communication for debugging

Capture d'écran 2024-12-11 120927.png

You will find my code below:

 

  */
    /* USER CODE END Header */
    /* Includes ------------------------------------------------------------------*/
    #include "main.h"
    
    /* Private includes ----------------------------------------------------------*/
    /* USER CODE BEGIN Includes */
    #include "stdlib.h"
    #include "stdio.h"
    #include <string.h>
    
    /* USER CODE END Includes */
    
    /* Private typedef -----------------------------------------------------------*/
    /* USER CODE BEGIN PTD */
    #define SPI_CS_PIN    GPIO_PIN_8
    #define SPI_CS_PORT   GPIOB
    #define SPI_IRQ_PIN   GPIO_PIN_7
    #define SPI_IRQ_PORT  GPIOB
    #define SPI_RST_PIN   GPIO_PIN_6
    #define SPI_RST_PORT  GPIOB
    
    #define BUFSIZE                        128
    #define VERBOSE_MODE                   1
    #define BLE_READPACKET_TIMEOUT         500
    
    #define FACTORYRESET_ENABLE            1
    #define BLUEFRUIT_CMD_TIMEOUT          1000
    /* USER CODE END PTD */
    
    /* Private define ------------------------------------------------------------*/
    /* USER CODE BEGIN PD */
    
    /* USER CODE END PD */
    
    /* Private macro -------------------------------------------------------------*/
    /* USER CODE BEGIN PM */
    
    /* USER CODE END PM */
    
    /* Private variables ---------------------------------------------------------*/
    SPI_HandleTypeDef hspi2;
    
    UART_HandleTypeDef huart2;
    
    /* USER CODE BEGIN PV */
    
    
    /* USER CODE END PV */
    
    /* Private function prototypes -----------------------------------------------*/
    void SystemClock_Config(void);
    static void MX_GPIO_Init(void);
    static void MX_USART2_UART_Init(void);
    static void MX_SPI2_Init(void);
    /* USER CODE BEGIN PFP */
    uint8_t ble_begin(void);
    uint8_t ble_factoryReset(void);
    void ble_echo(uint8_t enable);
    void ble_info(void);
    uint8_t sendCommand(const char* cmd, char* response, uint16_t timeout);
    void UART_Print(UART_HandleTypeDef *huart, const char *str);
    void printHex(const uint8_t *data, const uint32_t numBytes);
    uint8_t readPacket(uint16_t timeout);
    uint8_t packetbuffer[BUFSIZE];
    
    /* USER CODE END PFP */
    
    /* Private user code ---------------------------------------------------------*/
    /* USER CODE BEGIN 0 */
    
    void UART_SendBuffer(uint8_t *buffer, uint16_t size){
        HAL_UART_Transmit(&huart2, buffer, size, HAL_MAX_DELAY);
    }
    
    /* USER CODE END 0 */
    
    /**
      * @brief  The application entry point.
      * @retval int
      */
    int main(void)
    {
    
      /* USER CODE BEGIN 1 */
    
      /* USER CODE END 1 */
    
      /* MCU Configuration--------------------------------------------------------*/
    
      /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
      HAL_Init();
    
      /* USER CODE BEGIN Init */
    
      /* USER CODE END Init */
    
      /* Configure the system clock */
      SystemClock_Config();
    
      /* USER CODE BEGIN SysInit */
    
      /* USER CODE END SysInit */
    
      /* Initialize all configured peripherals */
      MX_GPIO_Init();
      MX_USART2_UART_Init();
      MX_SPI2_Init();
      /* USER CODE BEGIN 2 */
      UART_Print(&huart2, "Adafruit Bluefruit Command Mode Example\n");
      UART_Print(&huart2, "---------------------------------------\n");
    
      UART_Print(&huart2, "Starting ble_begin...\n");
      if (!ble_begin())
      {
          UART_Print(&huart2, "Couldn't find Bluefruit, make sure it's in Command mode & check wiring?\n");
          while (1);
      }
      UART_Print(&huart2, "OK!\n");
    
      if (FACTORYRESET_ENABLE)
      {
          UART_Print(&huart2, "Starting factory reset...\n");
          if (!ble_factoryReset())
          {
              UART_Print(&huart2, "Couldn't factory reset\n");
              while (1);
          }
          UART_Print(&huart2, "Factory reset complete\n");
          HAL_Delay(2000); // Allow the module to restart
      }
    
      UART_Print(&huart2, "Disabling echo...\n");
      ble_echo(0);
      UART_Print(&huart2, "Echo disabled\n");
    
      UART_Print(&huart2, "Requesting Bluefruit info:\n");
      ble_info();
    
      /* USER CODE END 2 */
    
      /* Infinite loop */
      /* USER CODE BEGIN WHILE */
      while (1)
      {
          UART_Print(&huart2, "Reading packet...\n");
          uint8_t len = readPacket(BLE_READPACKET_TIMEOUT);
          if (len > 0)
          {
              UART_Print(&huart2, "Received packet: ");
              printHex(packetbuffer, len);
          }
          HAL_Delay(1000);
      }
        /* USER CODE END WHILE */
    
        /* USER CODE BEGIN 3 */
      /* USER CODE END 3 */
    }
    
    /**
      * @brief System Clock Configuration
      * @retval None
      */
    void SystemClock_Config(void)
    {
      RCC_OscInitTypeDef RCC_OscInitStruct = {0};
      RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
    
      /** Configure the main internal regulator output voltage
      */
      __HAL_RCC_PWR_CLK_ENABLE();
      __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);
    
      /** Initializes the RCC Oscillators according to the specified parameters
      * in the RCC_OscInitTypeDef structure.
      */
      RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
      RCC_OscInitStruct.HSIState = RCC_HSI_ON;
      RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
      RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
      RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
      RCC_OscInitStruct.PLL.PLLM = 16;
      RCC_OscInitStruct.PLL.PLLN = 100;
      RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
      RCC_OscInitStruct.PLL.PLLQ = 7;
      if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
      {
        Error_Handler();
      }
    
      /** Initializes the CPU, AHB and APB buses clocks
      */
      RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                                  |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
      RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
      RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
      RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
      RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
    
      if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
      {
        Error_Handler();
      }
    }
    
    /**
      * @brief SPI2 Initialization Function
      * @PAram None
      * @retval None
      */
    static void MX_SPI2_Init(void)
    {
    
      /* USER CODE BEGIN SPI2_Init 0 */
    
      /* USER CODE END SPI2_Init 0 */
    
      /* USER CODE BEGIN SPI2_Init 1 */
    
      /* USER CODE END SPI2_Init 1 */
      /* SPI2 parameter configuration*/
      hspi2.Instance = SPI2;
      hspi2.Init.Mode = SPI_MODE_MASTER;
      hspi2.Init.Direction = SPI_DIRECTION_2LINES;
      hspi2.Init.DataSize = SPI_DATASIZE_8BIT;
      hspi2.Init.CLKPolarity = SPI_POLARITY_LOW;
      hspi2.Init.CLKPhase = SPI_PHASE_1EDGE;
      hspi2.Init.NSS = SPI_NSS_SOFT;
      hspi2.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
      hspi2.Init.FirstBit = SPI_FIRSTBIT_MSB;
      hspi2.Init.TIMode = SPI_TIMODE_DISABLE;
      hspi2.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
      hspi2.Init.CRCPolynomial = 10;
      if (HAL_SPI_Init(&hspi2) != HAL_OK)
      {
        Error_Handler();
      }
      /* USER CODE BEGIN SPI2_Init 2 */
    
      /* USER CODE END SPI2_Init 2 */
    
    }
    
    /**
      * @brief USART2 Initialization Function
      * @PAram None
      * @retval None
      */
    static void MX_USART2_UART_Init(void)
    {
    
      /* USER CODE BEGIN USART2_Init 0 */
    
      /* USER CODE END USART2_Init 0 */
    
      /* USER CODE BEGIN USART2_Init 1 */
    
      /* USER CODE END USART2_Init 1 */
      huart2.Instance = USART2;
      huart2.Init.BaudRate = 115200;
      huart2.Init.WordLength = UART_WORDLENGTH_8B;
      huart2.Init.StopBits = UART_STOPBITS_1;
      huart2.Init.Parity = UART_PARITY_NONE;
      huart2.Init.Mode = UART_MODE_TX_RX;
      huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
      huart2.Init.OverSampling = UART_OVERSAMPLING_16;
      if (HAL_UART_Init(&huart2) != HAL_OK)
      {
        Error_Handler();
      }
      /* USER CODE BEGIN USART2_Init 2 */
    
      /* USER CODE END USART2_Init 2 */
    
    }
    
    /**
      * @brief GPIO Initialization Function
      * @PAram None
      * @retval None
      */
    static void MX_GPIO_Init(void)
    {
      GPIO_InitTypeDef GPIO_InitStruct = {0};
    /* USER CODE BEGIN MX_GPIO_Init_1 */
    /* USER CODE END MX_GPIO_Init_1 */
    
      /* GPIO Ports Clock Enable */
      __HAL_RCC_GPIOC_CLK_ENABLE();
      __HAL_RCC_GPIOH_CLK_ENABLE();
      __HAL_RCC_GPIOA_CLK_ENABLE();
      __HAL_RCC_GPIOB_CLK_ENABLE();
    
      /*Configure GPIO pin Output Level */
      HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET);
    
      /*Configure GPIO pin Output Level */
      HAL_GPIO_WritePin(GPIOB, SPI_RST_Pin|SPI_CS_Pin, GPIO_PIN_RESET);
    
      /*Configure GPIO pin : B1_Pin */
      GPIO_InitStruct.Pin = B1_Pin;
      GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
      GPIO_InitStruct.Pull = GPIO_NOPULL;
      HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct);
    
      /*Configure GPIO pin : LD2_Pin */
      GPIO_InitStruct.Pin = LD2_Pin;
      GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
      GPIO_InitStruct.Pull = GPIO_NOPULL;
      GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
      HAL_GPIO_Init(LD2_GPIO_Port, &GPIO_InitStruct);
    
      /*Configure GPIO pins : SPI_RST_Pin SPI_CS_Pin */
      GPIO_InitStruct.Pin = SPI_RST_Pin|SPI_CS_Pin;
      GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
      GPIO_InitStruct.Pull = GPIO_NOPULL;
      GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
      HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
    
      /*Configure GPIO pin : SPI_IRQ_Pin */
      GPIO_InitStruct.Pin = SPI_IRQ_Pin;
      GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
      GPIO_InitStruct.Pull = GPIO_NOPULL;
      HAL_GPIO_Init(SPI_IRQ_GPIO_Port, &GPIO_InitStruct);
    
    /* USER CODE BEGIN MX_GPIO_Init_2 */
    /* USER CODE END MX_GPIO_Init_2 */
    }
    
    /* USER CODE BEGIN 4 */
    uint8_t ble_begin(void)
    {
        UART_Print(&huart2, "Initializing SPI communication...\n");
        HAL_GPIO_WritePin(SPI_CS_PORT, SPI_CS_PIN, GPIO_PIN_RESET);
        // Add SPI initialization code here if necessary
        HAL_GPIO_WritePin(SPI_CS_PORT, SPI_CS_PIN, GPIO_PIN_SET);
        UART_Print(&huart2, "SPI communication initialized.\n");
        return 1; // Return 1 for success, 0 for failure
    }
    
    uint8_t ble_factoryReset(void)
    {
        char response[BUFSIZE];
        if (sendCommand("AT+FACTORYRESET", response, BLUEFRUIT_CMD_TIMEOUT))
        {
            UART_Print(&huart2, "Factory Reset Response: ");
            UART_Print(&huart2, response);
            UART_Print(&huart2, "\n");
            return 1; // Success
        }
        else
        {
            UART_Print(&huart2, "Factory Reset Timeout or Error\n");
            return 0; // Failure
        }
    }
    
    void ble_echo(uint8_t enable)
    {
        char response[BUFSIZE];
        if (enable)
        {
            sendCommand("ATE=1", response, BLUEFRUIT_CMD_TIMEOUT);
        }
        else
        {
            sendCommand("ATE=0", response, BLUEFRUIT_CMD_TIMEOUT);
        }
        UART_Print(&huart2, "Echo Response: ");
        UART_Print(&huart2, response);
        UART_Print(&huart2, "\n");
    }
    
    void ble_info(void)
    {
        char response[BUFSIZE];
        if (sendCommand("ATI", response, BLUEFRUIT_CMD_TIMEOUT))
        {
            UART_Print(&huart2, "Module Info: ");
            UART_Print(&huart2, response);
            UART_Print(&huart2, "\n");
        }
        else
        {
            UART_Print(&huart2, "Info Command Timeout or Error\n");
        }
    }
    
    uint8_t sendCommand(const char* cmd, char* response, uint16_t timeout)
    {
        UART_Print(&huart2, "Sending command: ");
        UART_Print(&huart2, cmd);
        UART_Print(&huart2, "\n");
    
        uint8_t cmdLength = strlen(cmd);
        HAL_GPIO_WritePin(SPI_CS_PORT, SPI_CS_PIN, GPIO_PIN_RESET);
    
        for (uint8_t i = 0; i < cmdLength; i++)
        {
            if (HAL_SPI_Transmit(&hspi2, (uint8_t*)&cmd[i], 1, HAL_MAX_DELAY) != HAL_OK)
            {
                UART_Print(&huart2, "SPI Transmit Error\n");
            }
        }
    
        uint8_t newline = '\n';
        if (HAL_SPI_Transmit(&hspi2, &newline, 1, HAL_MAX_DELAY) != HAL_OK)
        {
            UART_Print(&huart2, "SPI Transmit Error\n");
        }
    
        HAL_GPIO_WritePin(SPI_CS_PORT, SPI_CS_PIN, GPIO_PIN_SET);
    
        UART_Print(&huart2, "Command sent, waiting for response...\n");
    
        uint32_t startTick = HAL_GetTick();
        uint8_t index = 0;
    
        while ((HAL_GetTick() - startTick) < timeout)
        {
            uint8_t byte;
            if (HAL_SPI_Receive(&hspi2, &byte, 1, HAL_MAX_DELAY) == HAL_OK)
            {
                response[index++] = byte;
                if (byte == '\n')
                {
                    response[index] = '\0';
                    UART_Print(&huart2, "Received response: ");
                    UART_Print(&huart2, response);
                    UART_Print(&huart2, "\n");
                    return 1; // Success
                }
            }
        }
    
        response[index] = '\0';
        UART_Print(&huart2, "Response Timeout\n");
        return 0; // Timeout or failure
    }
    
    void UART_Print(UART_HandleTypeDef *huart, const char *str)
    {
        HAL_UART_Transmit(huart, (uint8_t*)str, strlen(str), HAL_MAX_DELAY);
    }
    
    void printHex(const uint8_t *data, const uint32_t numBytes)
    {
        char buffer[3];
        for (uint32_t i = 0; i < numBytes; i++)
        {
            snprintf(buffer, sizeof(buffer), "%02X ", data[i]);
            UART_Print(&huart2, buffer);
        }
        UART_Print(&huart2, "\n");
    }
    
    uint8_t readPacket(uint16_t timeout)
    {
        UART_Print(&huart2, "Reading packet...\n");
        uint16_t origtimeout = timeout, replyidx = 0;
        uint8_t packetbuffer[BUFSIZE] = {0};
    
        while (timeout--)
        {
            if (replyidx >= 20) break;
            if((packetbuffer[1] == 'B') && replyidx == PACKET_BUTTON_LEN)
                break;
            uint8_t byte;
            HAL_StatusTypeDef status = HAL_SPI_Receive(&hspi2, &byte, 1, HAL_MAX_DELAY);
    
            if (status == HAL_OK)
            {
                if (byte == '!')
                {
                    replyidx = 0;
                }
                packetbuffer[replyidx++] = byte;
                timeout = origtimeout; // Reset timeout after receiving a byte
    
                // If a newline character is received, end of packet
                if (byte == '\n')
                {
                    break;
                }
            }
    
            if (timeout == 0) break;
            HAL_Delay(1); // Delay to prevent CPU overload
        }
    
        packetbuffer[replyidx] = 0;
    
        if (!replyidx) return 0;
        if (packetbuffer[0] != '!') return 0;
    
        uint8_t xsum = 0;
        uint8_t checksum = packetbuffer[replyidx - 1];
    
        for (uint8_t i = 0; i < replyidx - 1; i++)
        {
            xsum += packetbuffer[i];
        }
        xsum = ~xsum;
    
        if (xsum != checksum)
        {
            UART_Print(&huart2, "Checksum mismatch in packet: ");
            printHex((const uint8_t *)packetbuffer, replyidx);
            return 0;
        }
    
        return replyidx;
    }
    
    /* USER CODE END 4 */
    
    /**
      * @brief  This function is executed in case of error occurrence.
      * @retval None
      */
    void Error_Handler(void)
    {
      /* USER CODE BEGIN Error_Handler_Debug */
      /* User can add his own implementation to report the HAL error return state */
      //__disable_irq();
      while (1)
      {
      }
      /* USER CODE END Error_Handler_Debug */
    }
    
    #ifdef  USE_FULL_ASSERT
    /**
      * @brief  Reports the name of the source file and the source line number
      *         where the assert_param error has occurred.
      * @PAram  file: pointer to the source file name
      * @PAram  line: assert_param error line source number
      * @retval None
      */
    void assert_failed(uint8_t *file, uint32_t line)
    {
      /* USER CODE BEGIN 6 */
      /* User can add his own implementation to report the file name and line number,
         ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
      /* USER CODE END 6 */
    }
    #endif /* USE_FULL_ASSERT */

 

 

I want to send a data frame from my phone (like pressing a button) and receive data back to my phone (like ‘button 6 is pressed’) with the Bluetooth module.

10 REPLIES 10

So look at the linked resources for how to debug that.