cancel
Showing results for 
Search instead for 
Did you mean: 

Is the ASM330LHH imu sensor spi code correct?

leventdemirel99
Visitor

I want to read acc and gyro data from my ASM330LHH sensor with spi communication, but I can't try the code because I don't have a sensor at the moment, can you take a look at the code, is there anything wrong or missing?

(I selected the SPI_CS pin as PA4 and set it as in the screenshot, is it correct?)

(Do I need to write BSP_SPI1_Init(); in main function?)

(Should I use the ASM330LHH_Init(&imu); function last after scale and enable functions?)

 

 

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2025 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "stm32f429i_disc1_bus.h"    // BSP I2C fonksiyonları için gerekli
#include "stdio.h"
#include "string.h"
#include "asm330lhh.h"               // X-CUBE-MEMS1 paketi içerisindeki ASM330LHH sürücü dosyaları
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* IMU Nesneleri */
ASM330LHH_Object_t imu;
ASM330LHH_IO_t io_ctx;
ASM330LHH_Axes_t accel, gyro;
char buffer[100];  // UART üzerinden veri gönderimi için

/* Düşük Geçiren Filtre Değişkenleri */
float ax_f = 0.0f, ay_f = 0.0f, az_f = 0.0f;
float gx_f = 0.0f, gy_f = 0.0f, gz_f = 0.0f;
float alpha = 0.1f;  // 0.0 - 1.0 arası, yeni verinin ağırlığı
/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
UART_HandleTypeDef huart1;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART1_UART_Init(void);
/* USER CODE BEGIN PFP */
void UART_SendData(const char *data);
void IMU_SPI_Init(void);
void IMU_ReadData(void);
/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
int32_t BSP_SPI1_WriteReg(uint16_t Address, uint16_t Reg, uint8_t *pData, uint16_t len)
{
    uint8_t tx_buffer[len + 1];
    uint8_t rx_buffer[len + 1];

    // İlk byte yazma komutu: (Register adresi & 0x7F)
    tx_buffer[0] = (uint8_t)(Reg & 0x7F);
    memcpy(&tx_buffer[1], pData, len);

    HAL_GPIO_WritePin(SPI_CS_GPIO_Port, SPI_CS_Pin, GPIO_PIN_RESET);
    int32_t status = BSP_SPI1_SendRecv(tx_buffer, rx_buffer, len + 1);
    HAL_GPIO_WritePin(SPI_CS_GPIO_Port, SPI_CS_Pin, GPIO_PIN_SET);

    return status;
}

int32_t BSP_SPI1_ReadReg(uint16_t Address, uint16_t Reg, uint8_t *pData, uint16_t len)
{
    uint8_t tx_buffer[len + 1];
    uint8_t rx_buffer[len + 1];

    // İlk byte okuma komutu: (Register adresi | 0x80)
    tx_buffer[0] = (uint8_t)(Reg | 0x80);
    memset(&tx_buffer[1], 0xFF, len); // Dummy byte gönderilir

    HAL_GPIO_WritePin(SPI_CS_GPIO_Port, SPI_CS_Pin, GPIO_PIN_RESET);
    int32_t status = BSP_SPI1_SendRecv(tx_buffer, rx_buffer, len + 1);
    HAL_GPIO_WritePin(SPI_CS_GPIO_Port, SPI_CS_Pin, GPIO_PIN_SET);

    memcpy(pData, &rx_buffer[1], len);

    return status;
}
/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{

  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_USART1_UART_Init();
  /* USER CODE BEGIN 2 */
  BSP_SPI1_Init(); // Is that necessary?
  IMU_SPI_Init();
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
	    IMU_ReadData();
	    HAL_Delay(10); // 100 Hz veri okuma hızı için 10ms bekle
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 4;
  RCC_OscInitStruct.PLL.PLLN = 180;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 3;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Activate the Over-Drive mode
  */
  if (HAL_PWREx_EnableOverDrive() != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief USART1 Initialization Function
  * @PAram None
  * @retval None
  */
static void MX_USART1_UART_Init(void)
{

  /* USER CODE BEGIN USART1_Init 0 */

  /* USER CODE END USART1_Init 0 */

  /* USER CODE BEGIN USART1_Init 1 */

  /* USER CODE END USART1_Init 1 */
  huart1.Instance = USART1;
  huart1.Init.BaudRate = 115200;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_UART_Init(&huart1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART1_Init 2 */

  /* USER CODE END USART1_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  * @PAram None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOH_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(SPI_CS_GPIO_Port, SPI_CS_Pin, GPIO_PIN_SET);

  /*Configure GPIO pin : SPI_CS_Pin */
  GPIO_InitStruct.Pin = SPI_CS_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
  HAL_GPIO_Init(SPI_CS_GPIO_Port, &GPIO_InitStruct);

/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}

/* USER CODE BEGIN 4 */
void UART_SendData(const char *data) {
  HAL_UART_Transmit(&huart1, (uint8_t*)data, strlen(data), 100);
}

void IMU_SPI_Init(void) {
    io_ctx.BusType   = ASM330LHH_SPI_4WIRES_BUS;
    io_ctx.Init      = BSP_SPI1_Init;
    io_ctx.DeInit    = BSP_SPI1_DeInit;
    io_ctx.ReadReg   = BSP_SPI1_ReadReg;
    io_ctx.WriteReg  = BSP_SPI1_WriteReg;
    io_ctx.GetTick   = BSP_GetTick;

    // SPI kullanımında sensör adresi gerekmiyor, CS pini kontrol edilir.
    io_ctx.Address   = 0; // SPI'de adres 0 olarak bırakılır

    ASM330LHH_RegisterBusIO(&imu, &io_ctx);

    uint8_t whoamI = 0;
    ASM330LHH_ReadID(&imu, &whoamI);
    if (whoamI != ASM330LHH_ID) {
        UART_SendData("IMU Error: Sensor not found!\r\n");
        Error_Handler();
    }

    ASM330LHH_Init(&imu);
    ASM330LHH_ACC_Enable(&imu);
    ASM330LHH_GYRO_Enable(&imu);
    ASM330LHH_ACC_SetFullScale(&imu, 4);       // ±4g
    ASM330LHH_GYRO_SetFullScale(&imu, 2000);   // ±2000 dps
    ASM330LHH_ACC_SetOutputDataRate(&imu, 416.0f);
    ASM330LHH_GYRO_SetOutputDataRate(&imu, 416.0f);

    UART_SendData("IMU Initialized via SPI\r\n");
}

/* IMU Verilerini Okuma, Dönüştürme ve Filtreleme Fonksiyonu */
void IMU_ReadData(void) {
  ASM330LHH_ACC_GetAxes(&imu, &accel);
  ASM330LHH_GYRO_GetAxes(&imu, &gyro);

  /* İvmeölçer verisini mg'den m/s²'ye çevirme (1 mg ≈ 0.00980665 m/s²) */
  float ax = accel.x * 0.00980665f;
  float ay = accel.y * 0.00980665f;
  float az = accel.z * 0.00980665f;

  /* Jiroskop verisini mdps'den dps'ye çevirme (1000 mdps = 1 dps) */
  float gx = gyro.x * 0.001f;
  float gy = gyro.y * 0.001f;
  float gz = gyro.z * 0.001f;

  /* Düşük geçiren filtre uygulaması */
  ax_f = ax_f * (1.0f - alpha) + ax * alpha;
  ay_f = ay_f * (1.0f - alpha) + ay * alpha;
  az_f = az_f * (1.0f - alpha) + az * alpha;
  gx_f = gx_f * (1.0f - alpha) + gx * alpha;
  gy_f = gy_f * (1.0f - alpha) + gy * alpha;
  gz_f = gz_f * (1.0f - alpha) + gz * alpha;

  /* Formatlı veriyi UART üzerinden gönder */
  sprintf(buffer, "AX:%.2f AY:%.2f AZ:%.2f | GX:%.2f GY:%.2f GZ:%.2f\r\n",
          ax_f, ay_f, az_f, gx_f, gy_f, gz_f);
  UART_SendData(buffer);
}
/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @PAram  file: pointer to the source file name
  * @PAram  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

 

 

 

 

 

6 REPLIES 6
leventdemirel99
Visitor

io_ctx.ReadReg = BSP_SPI1_ReadReg;
io_ctx.WriteReg = BSP_SPI1_WriteReg;
what can I use instead of this way will my code work?

Federica Bossi
ST Employee

Hi @leventdemirel99 ,

I suggest you use our official drivers on Github.

Hope this helps :)

In order to give better visibility on the answered topics, please click on 'Accept as Solution' on the reply which solved your issue or answered your question.

Since I am new to STM32 programming, I cannot follow the codes on github, can you comment on the code I wrote for now?

leventdemirel99
Visitor

So is it correct to use?

 

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2025 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <string.h>
#include <stdio.h>
#include "asm330lhh_reg.h"

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define SENSOR_BUS hspi1
#define PWM_3V3 915
#define    BOOT_TIME            10 //ms
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
SPI_HandleTypeDef hspi1;

TIM_HandleTypeDef htim3;

UART_HandleTypeDef huart1;

/* USER CODE BEGIN PV */
static int16_t data_raw_acceleration[3];
static int16_t data_raw_angular_rate[3];
static int16_t data_raw_temperature;
static float_t acceleration_mg[3];
static float_t angular_rate_mdps[3];
static float_t temperature_degC;
static uint8_t whoamI, rst;
static uint8_t tx_buffer[1000];
/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_TIM3_Init(void);
static void MX_SPI1_Init(void);
/* USER CODE BEGIN PFP */
static int32_t platform_write(void *handle, uint8_t reg, const uint8_t *bufp, uint16_t len);
static int32_t platform_read(void *handle, uint8_t reg, uint8_t *bufp, uint16_t len);
static void tx_com( uint8_t *tx_buffer, uint16_t len );
static void platform_delay(uint32_t ms);
static void platform_init(void);
void asm330lhh_read_data_polling(void);
/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{

  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_USART1_UART_Init();
  MX_TIM3_Init();
  MX_SPI1_Init();
  /* USER CODE BEGIN 2 */
  platform_init();
  asm330lhh_read_data_polling();
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */

  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE3);

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 4;
  RCC_OscInitStruct.PLL.PLLN = 72;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 3;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief SPI1 Initialization Function
  * @PAram None
  * @retval None
  */
static void MX_SPI1_Init(void)
{

  /* USER CODE BEGIN SPI1_Init 0 */

  /* USER CODE END SPI1_Init 0 */

  /* USER CODE BEGIN SPI1_Init 1 */

  /* USER CODE END SPI1_Init 1 */
  /* SPI1 parameter configuration*/
  hspi1.Instance = SPI1;
  hspi1.Init.Mode = SPI_MODE_MASTER;
  hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  hspi1.Init.CLKPolarity = SPI_POLARITY_HIGH;
  hspi1.Init.CLKPhase = SPI_PHASE_2EDGE;
  hspi1.Init.NSS = SPI_NSS_SOFT;
  hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
  hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  hspi1.Init.CRCPolynomial = 10;
  if (HAL_SPI_Init(&hspi1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN SPI1_Init 2 */

  /* USER CODE END SPI1_Init 2 */

}

/**
  * @brief TIM3 Initialization Function
  * @PAram None
  * @retval None
  */
static void MX_TIM3_Init(void)
{

  /* USER CODE BEGIN TIM3_Init 0 */

  /* USER CODE END TIM3_Init 0 */

  TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  TIM_MasterConfigTypeDef sMasterConfig = {0};
  TIM_OC_InitTypeDef sConfigOC = {0};

  /* USER CODE BEGIN TIM3_Init 1 */

  /* USER CODE END TIM3_Init 1 */
  htim3.Instance = TIM3;
  htim3.Init.Prescaler = 0;
  htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim3.Init.Period = 65535;
  htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
  {
    Error_Handler();
  }
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_TIM_PWM_Init(&htim3) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_PWM1;
  sConfigOC.Pulse = 0;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM3_Init 2 */

  /* USER CODE END TIM3_Init 2 */
  HAL_TIM_MspPostInit(&htim3);

}

/**
  * @brief USART1 Initialization Function
  * @PAram None
  * @retval None
  */
static void MX_USART1_UART_Init(void)
{

  /* USER CODE BEGIN USART1_Init 0 */

  /* USER CODE END USART1_Init 0 */

  /* USER CODE BEGIN USART1_Init 1 */

  /* USER CODE END USART1_Init 1 */
  huart1.Instance = USART1;
  huart1.Init.BaudRate = 115200;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_UART_Init(&huart1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART1_Init 2 */

  /* USER CODE END USART1_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  * @PAram None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOH_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOC_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(CS_up_GPIO_Port, CS_up_Pin, GPIO_PIN_SET);

  /*Configure GPIO pin : CS_up_Pin */
  GPIO_InitStruct.Pin = CS_up_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
  HAL_GPIO_Init(CS_up_GPIO_Port, &GPIO_InitStruct);

/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}

/* USER CODE BEGIN 4 */
static int32_t platform_write(void *handle, uint8_t reg, const uint8_t *bufp, uint16_t len)
{
  HAL_GPIO_WritePin(CS_up_GPIO_Port, CS_up_Pin, GPIO_PIN_RESET);
  HAL_SPI_Transmit(handle, &reg, 1, 1000);
  HAL_SPI_Transmit(handle, bufp, len, 1000);
  HAL_GPIO_WritePin(CS_up_GPIO_Port, CS_up_Pin, GPIO_PIN_SET);
  return 0;
}
/*
 * @brief  Read generic device register (platform dependent)
 *
 * @PAram  handle    customizable argument. In this examples is used in
 *                   order to select the correct sensor bus handler.
 * @PAram  reg       register to read
 * @PAram  bufp      pointer to buffer that store the data read
 * @PAram  len       number of consecutive register to read
 *
 */
static int32_t platform_read(void *handle, uint8_t reg, uint8_t *bufp,
                             uint16_t len)
{

  reg |= 0x80;
  HAL_GPIO_WritePin(CS_up_GPIO_Port, CS_up_Pin, GPIO_PIN_RESET);
  HAL_SPI_Transmit(handle, &reg, 1, 1000);
  HAL_SPI_Receive(handle, bufp, len, 1000);
  HAL_GPIO_WritePin(CS_up_GPIO_Port, CS_up_Pin, GPIO_PIN_SET);

  return 0;
}

static void tx_com(uint8_t *tx_buffer, uint16_t len)
{
  HAL_UART_Transmit(&huart1, tx_buffer, len, 1000);

}

static void platform_delay(uint32_t ms)
{
  HAL_Delay(ms);
}

/* Platform init PWM çıkışı sensörü beslemek için */
static void platform_init(void)
{
  TIM3->CCR1 = PWM_3V3; // PWM duty-cycle set
  TIM3->CCR2 = PWM_3V3; // PWM duty-cycle set
  HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_1);
  HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_2);
  HAL_Delay(1000);
}

/* Sonsuz döngü kaldırılmış sensör polling fonksiyonu */
void asm330lhh_read_data_polling(void)
{
  stmdev_ctx_t dev_ctx;
  dev_ctx.write_reg = platform_write;
  dev_ctx.read_reg = platform_read;
  dev_ctx.mdelay = platform_delay;
  dev_ctx.handle = &SENSOR_BUS;

  platform_delay(BOOT_TIME);

  asm330lhh_device_id_get(&dev_ctx, &whoamI);
  if (whoamI != ASM330LHH_ID)
    Error_Handler();

  asm330lhh_reset_set(&dev_ctx, PROPERTY_ENABLE);
  do {
    asm330lhh_reset_get(&dev_ctx, &rst);
  } while (rst);

  asm330lhh_device_conf_set(&dev_ctx, PROPERTY_ENABLE);
  asm330lhh_block_data_update_set(&dev_ctx, PROPERTY_ENABLE);
  asm330lhh_xl_data_rate_set(&dev_ctx, ASM330LHH_XL_ODR_12Hz5);
  asm330lhh_gy_data_rate_set(&dev_ctx, ASM330LHH_GY_ODR_12Hz5);
  asm330lhh_xl_full_scale_set(&dev_ctx, ASM330LHH_2g);
  asm330lhh_gy_full_scale_set(&dev_ctx, ASM330LHH_2000dps);
  asm330lhh_xl_hp_path_on_out_set(&dev_ctx, ASM330LHH_LP_ODR_DIV_100);
  asm330lhh_xl_filter_lp2_set(&dev_ctx, PROPERTY_ENABLE);

  // sensör okuma tek seferlik yapıldı, sürekli döngü dışarıda
  uint8_t reg;
  asm330lhh_xl_flag_data_ready_get(&dev_ctx, &reg);
  if (reg) {
    memset(data_raw_acceleration, 0, sizeof(data_raw_acceleration));
    asm330lhh_acceleration_raw_get(&dev_ctx, data_raw_acceleration);
    for (int i = 0; i < 3; i++) {
      acceleration_mg[i] = asm330lhh_from_fs2g_to_mg(data_raw_acceleration[i]);
    }
    snprintf((char*)tx_buffer, sizeof(tx_buffer),
             "Accel [mg]:%4.2f\t%4.2f\t%4.2f\r\n",
             acceleration_mg[0], acceleration_mg[1], acceleration_mg[2]);
    tx_com(tx_buffer, strlen((char const*)tx_buffer));
  }

  asm330lhh_gy_flag_data_ready_get(&dev_ctx, &reg);
  if (reg) {
    memset(data_raw_angular_rate, 0, sizeof(data_raw_angular_rate));
    asm330lhh_angular_rate_raw_get(&dev_ctx, data_raw_angular_rate);
    for (int i = 0; i < 3; i++) {
      angular_rate_mdps[i] = asm330lhh_from_fs2000dps_to_mdps(data_raw_angular_rate[i]);
    }
    snprintf((char*)tx_buffer, sizeof(tx_buffer),
             "Gyro [mdps]:%4.2f\t%4.2f\t%4.2f\r\n",
             angular_rate_mdps[0], angular_rate_mdps[1], angular_rate_mdps[2]);
    tx_com(tx_buffer, strlen((char const*)tx_buffer));
  }

  asm330lhh_temp_flag_data_ready_get(&dev_ctx, &reg);
  if (reg) {
    memset(&data_raw_temperature, 0, sizeof(data_raw_temperature));
    asm330lhh_temperature_raw_get(&dev_ctx, &data_raw_temperature);
    temperature_degC = asm330lhh_from_lsb_to_celsius(data_raw_temperature);
    snprintf((char*)tx_buffer, sizeof(tx_buffer),
             "Temp [°C]:%6.2f\r\n", temperature_degC);
    tx_com(tx_buffer, strlen((char const*)tx_buffer));
  }
}
/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @PAram  file: pointer to the source file name
  * @PAram  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

 

Hi @leventdemirel99 ,

I don't have the possibility to test your code but I don't see any big mistakes.

To answer your questions:

  1. The configuration of PA4 as the SPI chip select (CS) pin seems correct. You have set it as an output and initialized it to a high level, which is standard practice for SPI CS pins.
  2. Yes, you need to initialize the SPI peripheral in your main function. This might be done through a function like BSP_SPI1_Init(), but since you are using the HAL library, ensure that the SPI initialization is correctly set up in your platform_init function or elsewhere in your initialization code.
  3. The ASM330LHH_Init(&imu) function should be called after setting the scale and enabling the sensor. This is because the initialization function might depend on the sensor being correctly configured first.
In order to give better visibility on the answered topics, please click on 'Accept as Solution' on the reply which solved your issue or answered your question.

listening to your advice, I wrote the code by going through github, can you review my current code?

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2025 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <string.h>
#include <stdio.h>
#include "asm330lhh_reg.h"

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define SENSOR_BUS hspi1
#define PWM_3V3 915
#define    BOOT_TIME            10 //ms
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
SPI_HandleTypeDef hspi1;

TIM_HandleTypeDef htim3;

UART_HandleTypeDef huart1;

/* USER CODE BEGIN PV */
static int16_t data_raw_acceleration[3];
static int16_t data_raw_angular_rate[3];
static int16_t data_raw_temperature;
static float_t acceleration_mg[3];
static float_t angular_rate_mdps[3];
static float_t temperature_degC;
static uint8_t whoamI, rst;
static uint8_t tx_buffer[1000];
/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_TIM3_Init(void);
static void MX_SPI1_Init(void);
/* USER CODE BEGIN PFP */
static int32_t platform_write(void *handle, uint8_t reg, const uint8_t *bufp, uint16_t len);
static int32_t platform_read(void *handle, uint8_t reg, uint8_t *bufp, uint16_t len);
static void tx_com( uint8_t *tx_buffer, uint16_t len );
static void platform_delay(uint32_t ms);
static void platform_init(void);
void asm330lhh_read_data_polling(void);
/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{

  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_USART1_UART_Init();
  MX_TIM3_Init();
  MX_SPI1_Init();
  /* USER CODE BEGIN 2 */
  platform_init();
  asm330lhh_read_data_polling();
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */

  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE3);

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 4;
  RCC_OscInitStruct.PLL.PLLN = 72;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 3;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief SPI1 Initialization Function
  * @PAram None
  * @retval None
  */
static void MX_SPI1_Init(void)
{

  /* USER CODE BEGIN SPI1_Init 0 */

  /* USER CODE END SPI1_Init 0 */

  /* USER CODE BEGIN SPI1_Init 1 */

  /* USER CODE END SPI1_Init 1 */
  /* SPI1 parameter configuration*/
  hspi1.Instance = SPI1;
  hspi1.Init.Mode = SPI_MODE_MASTER;
  hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  hspi1.Init.CLKPolarity = SPI_POLARITY_HIGH;
  hspi1.Init.CLKPhase = SPI_PHASE_2EDGE;
  hspi1.Init.NSS = SPI_NSS_SOFT;
  hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
  hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  hspi1.Init.CRCPolynomial = 10;
  if (HAL_SPI_Init(&hspi1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN SPI1_Init 2 */

  /* USER CODE END SPI1_Init 2 */

}

/**
  * @brief TIM3 Initialization Function
  * @PAram None
  * @retval None
  */
static void MX_TIM3_Init(void)
{

  /* USER CODE BEGIN TIM3_Init 0 */

  /* USER CODE END TIM3_Init 0 */

  TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  TIM_MasterConfigTypeDef sMasterConfig = {0};
  TIM_OC_InitTypeDef sConfigOC = {0};

  /* USER CODE BEGIN TIM3_Init 1 */

  /* USER CODE END TIM3_Init 1 */
  htim3.Instance = TIM3;
  htim3.Init.Prescaler = 0;
  htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim3.Init.Period = 65535;
  htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
  {
    Error_Handler();
  }
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_TIM_PWM_Init(&htim3) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_PWM1;
  sConfigOC.Pulse = 0;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM3_Init 2 */

  /* USER CODE END TIM3_Init 2 */
  HAL_TIM_MspPostInit(&htim3);

}

/**
  * @brief USART1 Initialization Function
  * @PAram None
  * @retval None
  */
static void MX_USART1_UART_Init(void)
{

  /* USER CODE BEGIN USART1_Init 0 */

  /* USER CODE END USART1_Init 0 */

  /* USER CODE BEGIN USART1_Init 1 */

  /* USER CODE END USART1_Init 1 */
  huart1.Instance = USART1;
  huart1.Init.BaudRate = 115200;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_UART_Init(&huart1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART1_Init 2 */

  /* USER CODE END USART1_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  * @PAram None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOH_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOC_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(CS_up_GPIO_Port, CS_up_Pin, GPIO_PIN_SET);

  /*Configure GPIO pin : CS_up_Pin */
  GPIO_InitStruct.Pin = CS_up_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
  HAL_GPIO_Init(CS_up_GPIO_Port, &GPIO_InitStruct);

/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}

/* USER CODE BEGIN 4 */
static int32_t platform_write(void *handle, uint8_t reg, const uint8_t *bufp, uint16_t len)
{
  HAL_GPIO_WritePin(CS_up_GPIO_Port, CS_up_Pin, GPIO_PIN_RESET);
  HAL_SPI_Transmit(handle, &reg, 1, 1000);
  HAL_SPI_Transmit(handle, bufp, len, 1000);
  HAL_GPIO_WritePin(CS_up_GPIO_Port, CS_up_Pin, GPIO_PIN_SET);
  return 0;
}
/*
 * @brief  Read generic device register (platform dependent)
 *
 * @PAram  handle    customizable argument. In this examples is used in
 *                   order to select the correct sensor bus handler.
 * @PAram  reg       register to read
 * @PAram  bufp      pointer to buffer that store the data read
 * @PAram  len       number of consecutive register to read
 *
 */
static int32_t platform_read(void *handle, uint8_t reg, uint8_t *bufp,
                             uint16_t len)
{

  reg |= 0x80;
  HAL_GPIO_WritePin(CS_up_GPIO_Port, CS_up_Pin, GPIO_PIN_RESET);
  HAL_SPI_Transmit(handle, &reg, 1, 1000);
  HAL_SPI_Receive(handle, bufp, len, 1000);
  HAL_GPIO_WritePin(CS_up_GPIO_Port, CS_up_Pin, GPIO_PIN_SET);

  return 0;
}

static void tx_com(uint8_t *tx_buffer, uint16_t len)
{
  HAL_UART_Transmit(&huart1, tx_buffer, len, 1000);

}

static void platform_delay(uint32_t ms)
{
  HAL_Delay(ms);
}

/* Platform init PWM çıkışı sensörü beslemek için */
static void platform_init(void)
{
  TIM3->CCR1 = PWM_3V3; // PWM duty-cycle set
  TIM3->CCR2 = PWM_3V3; // PWM duty-cycle set
  HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_1);
  HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_2);
  HAL_Delay(1000);
}

/* Sonsuz döngü kaldırılmış sensör polling fonksiyonu */
void asm330lhh_read_data_polling(void)
{
  stmdev_ctx_t dev_ctx;
  dev_ctx.write_reg = platform_write;
  dev_ctx.read_reg = platform_read;
  dev_ctx.mdelay = platform_delay;
  dev_ctx.handle = &SENSOR_BUS;

  platform_delay(BOOT_TIME);

  asm330lhh_device_id_get(&dev_ctx, &whoamI);
  if (whoamI != ASM330LHH_ID)
    Error_Handler();

  asm330lhh_reset_set(&dev_ctx, PROPERTY_ENABLE);
  do {
    asm330lhh_reset_get(&dev_ctx, &rst);
  } while (rst);

  asm330lhh_device_conf_set(&dev_ctx, PROPERTY_ENABLE);
  asm330lhh_block_data_update_set(&dev_ctx, PROPERTY_ENABLE);
  asm330lhh_xl_data_rate_set(&dev_ctx, ASM330LHH_XL_ODR_12Hz5);
  asm330lhh_gy_data_rate_set(&dev_ctx, ASM330LHH_GY_ODR_12Hz5);
  asm330lhh_xl_full_scale_set(&dev_ctx, ASM330LHH_2g);
  asm330lhh_gy_full_scale_set(&dev_ctx, ASM330LHH_2000dps);
  asm330lhh_xl_hp_path_on_out_set(&dev_ctx, ASM330LHH_LP_ODR_DIV_100);
  asm330lhh_xl_filter_lp2_set(&dev_ctx, PROPERTY_ENABLE);

  // sensör okuma tek seferlik yapıldı, sürekli döngü dışarıda
  uint8_t reg;
  asm330lhh_xl_flag_data_ready_get(&dev_ctx, &reg);
  if (reg) {
    memset(data_raw_acceleration, 0, sizeof(data_raw_acceleration));
    asm330lhh_acceleration_raw_get(&dev_ctx, data_raw_acceleration);
    for (int i = 0; i < 3; i++) {
      acceleration_mg[i] = asm330lhh_from_fs2g_to_mg(data_raw_acceleration[i]);
    }
    snprintf((char*)tx_buffer, sizeof(tx_buffer),
             "Accel [mg]:%4.2f\t%4.2f\t%4.2f\r\n",
             acceleration_mg[0], acceleration_mg[1], acceleration_mg[2]);
    tx_com(tx_buffer, strlen((char const*)tx_buffer));
  }

  asm330lhh_gy_flag_data_ready_get(&dev_ctx, &reg);
  if (reg) {
    memset(data_raw_angular_rate, 0, sizeof(data_raw_angular_rate));
    asm330lhh_angular_rate_raw_get(&dev_ctx, data_raw_angular_rate);
    for (int i = 0; i < 3; i++) {
      angular_rate_mdps[i] = asm330lhh_from_fs2000dps_to_mdps(data_raw_angular_rate[i]);
    }
    snprintf((char*)tx_buffer, sizeof(tx_buffer),
             "Gyro [mdps]:%4.2f\t%4.2f\t%4.2f\r\n",
             angular_rate_mdps[0], angular_rate_mdps[1], angular_rate_mdps[2]);
    tx_com(tx_buffer, strlen((char const*)tx_buffer));
  }

  asm330lhh_temp_flag_data_ready_get(&dev_ctx, &reg);
  if (reg) {
    memset(&data_raw_temperature, 0, sizeof(data_raw_temperature));
    asm330lhh_temperature_raw_get(&dev_ctx, &data_raw_temperature);
    temperature_degC = asm330lhh_from_lsb_to_celsius(data_raw_temperature);
    snprintf((char*)tx_buffer, sizeof(tx_buffer),
             "Temp [°C]:%6.2f\r\n", temperature_degC);
    tx_com(tx_buffer, strlen((char const*)tx_buffer));
  }
}
/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @PAram  file: pointer to the source file name
  * @PAram  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */