cancel
Showing results for 
Search instead for 
Did you mean: 

Having trouble interfacing RGB LED and Gas Sensor

DRicc.2
Associate III

Previously I posted on this forum as I was having trouble converting the gas sensor ADC value to voltage.

That problem has since been fixed, although I seem to be running into a new issue where my WS2812 RGB LED won't turn on, and the PuTTy monitor is outputting a incorrect value for my gas sensor. Here is the digikey link of the RGB LED that I am using: https://www.digikey.com/en/products/detail/inolux/IN-PI554FCH/7604874.

The code that I referenced for the RGB LEDs can be found from this Youtube video: https://www.youtube.com/watch?v=-3VKkTSAytM&t=1389s.

 

DRicc2_0-1703649644767.png

Here is a picture of my IOC setup, I have PB15 tied to the signal pin of my RGB LED and 5V and GND to it connected on my breadboard

 

Here is the SPI Header File code (The outer brackets are just to keep the code neat and not included in the actual SPI): 

[

#ifndef INC_IN_PI554FCH_SPI_H_
#define INC_IN_PI554FCH_SPI_H_

void SetLED (int led, int RED, int GREEN, int BLUE);
void RGB_Send(void);

 

#endif /* INC_IN_PI554FCH_SPI_H_ */

]

 

Here is the SPI C code:

 

[

/*
 * IN-PI554FCH.c
 *
 *  Created on: Dec 24, 2023
 *      Author: ricci
 */
#include "main.h" //Include main header file in project repository
#include "IN-PI554FCH_SPI.h" //Include custom RGB header file (Clone of WS2813Bs)
#define NUM_LED 1 //Define the # of RGB LEDs being used as 1
uint8_t LED_Data[NUM_LED][4]; //Create a matrix array to store the three colors for each LED
 
extern SPI_HandleTypeDef hspi2; //Defines SPI handler as an external variable
 
void SetLED (int led, int RED, int GREEN, int BLUE) //Function to set the colors for each LED
{
LED_Data[led][0] = led;
LED_Data[led][1] = GREEN;
LED_Data[led][2] = RED;
LED_Data[led][3] = BLUE;
}
 
void RGB_spi(int GREEN, int RED, int BLUE) //Send data through the SPI using the color codes
{
uint32_t color = GREEN<<16 | RED<<8 | BLUE; //Combine the 3 color bytes to make single 24 bit data
uint32_t SendData[24]; //Creates an array of 25 bytes to send the data to the SPI
int index = 0; //Variable used to keep track of how many bytes are occupied in the array
 
for (int i=23;i>=0;i--)//Shift the color data by 23 bits to the right, then to extract that position
{
if(((color>>i)&0x01)==1)SendData[index++]=0b110; //If the bit is a 1, store 110 in the 1st element of the array,
//otherwise will store 100 in an array, shifting the color data 22
//places to extract the 2nd bit from the end
else SendData[index++]=0b100;
}
HAL_SPI_Transmit(&hspi2, SendData, 24, 1000);
}
 
 
void RGB_Send (void) //Function calls from the main file to send the data to each LED being used
{
for(int i=0; i<NUM_LED; i++) //For loop is called as many times as the # of LEDs in the system
{
RGB_spi(LED_Data[i][1], LED_Data[i][2], LED_Data[i][3]); //Sends data for each individual LEDs
}
}

]

 

 

1 REPLY 1
DRicc.2
Associate III

Here is the main code: 

Here is the main code: 

[

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "IN-PI554FCH_SPI.h" //Header file for RGB LED
#include <stdio.h>  // Standard header file
#include <string.h> //String header file
 
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
 
/* USER CODE END Includes */
 
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
 
/* USER CODE END PTD */
 
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
 
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
 
/* USER CODE END PM */
 
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
 
SPI_HandleTypeDef hspi2;
 
UART_HandleTypeDef huart2;
 
/* USER CODE BEGIN PV */
 
/* USER CODE END PV */
 
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART2_UART_Init(void);
static void MX_ADC1_Init(void);
static void MX_SPI2_Init(void);
 
uint16_t ADCval;   //Unsigned 16 bit variable, 16 bit registers to hold 12 bit ADC data
float Voltage;     //Unsigned 16 bit variable, that will take the 12 bit ADC "ADCVal" data and produce a voltage output
char msg [100];    //Makes the size of the data 20 bytes
 
int main(void)
{
  /* USER CODE BEGIN 1 */
 
  /* USER CODE END 1 */
 
  /* MCU Configuration--------------------------------------------------------*/
 
  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();
 
  /* USER CODE BEGIN Init */
 
  /* USER CODE END Init */
 
  /* Configure the system clock */
  SystemClock_Config();
 
  /* USER CODE BEGIN SysInit */
 
  /* USER CODE END SysInit */
 
  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_USART2_UART_Init();
  MX_ADC1_Init();
  MX_SPI2_Init();
 
 
  for (int i=0; i<8; i++)
  {
  SetLED(i,0,0,0);
  }
 
  while (1)
  {
  HAL_ADC_Start(&hadc1);                      //Starts the ADC on the STM32
  HAL_ADC_PollForConversion(&hadc1, 100);     //Pulls the data from the ADC of the MCU to gather the voltage values from the gas sensor
  ADCval = HAL_ADC_GetValue(&hadc1);          //Pulls ADC value from channel zero, stores it in the voltage variable we have created
  Voltage = (ADCval *5.0) /(4095);            //Obtains voltage value by taking ADC value from HAL, multiplying it by the supply voltage,
                                                //And dividing it by the 16 bit resolution
 
sprintf(msg, "ADCval: %hu", ADCval);        //Stores the voltage value (unsigned short 16 bit integer) from the ADC into the msg buffer
HAL_UART_Transmit(&huart2, (uint8_t*)msg, strlen(msg), HAL_MAX_DELAY); //After the data is stored from sprintf, this line transmits that data onto the serial PuTTy
sprintf(msg, " Voltage: %0.5f \r\n", Voltage);
HAL_UART_Transmit(&huart2, (uint8_t*)msg, strlen(msg), HAL_MAX_DELAY);
HAL_Delay(500); //Sets a 500 millisecond delay for each new line
 
  for(int i=0;i<8;i++)
  {
  SetLED(i,255,0,0);
  }
  RGB_Send();
  HAL_Delay(1000);
 
 
  }
  /* USER CODE END 3 */
}
 
/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
 
  /** Configure the main internal regulator output voltage
  */
  if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK)
  {
    Error_Handler();
  }
 
  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLM = 1;
  RCC_OscInitStruct.PLL.PLLN = 10;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7;
  RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
  RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
 
  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
 
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK)
  {
    Error_Handler();
  }
}
 
/**
  * @brief ADC1 Initialization Function
  * @PAram None
  * @retval None
  */
static void MX_ADC1_Init(void)
{
 
  /* USER CODE BEGIN ADC1_Init 0 */
 
  /* USER CODE END ADC1_Init 0 */
 
  ADC_MultiModeTypeDef multimode = {0};
  ADC_ChannelConfTypeDef sConfig = {0};
 
  /* USER CODE BEGIN ADC1_Init 1 */
 
  /* USER CODE END ADC1_Init 1 */
 
  /** Common config
  */
  hadc1.Instance = ADC1;
  hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
  hadc1.Init.Resolution = ADC_RESOLUTION_12B;
  hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
  hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  hadc1.Init.LowPowerAutoWait = DISABLE;
  hadc1.Init.ContinuousConvMode = DISABLE;
  hadc1.Init.NbrOfConversion = 1;
  hadc1.Init.DiscontinuousConvMode = DISABLE;
  hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  hadc1.Init.DMAContinuousRequests = DISABLE;
  hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED;
  hadc1.Init.OversamplingMode = DISABLE;
  if (HAL_ADC_Init(&hadc1) != HAL_OK)
  {
    Error_Handler();
  }
 
  /** Configure the ADC multi-mode
  */
  multimode.Mode = ADC_MODE_INDEPENDENT;
  if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK)
  {
    Error_Handler();
  }
 
  /** Configure Regular Channel
  */
  sConfig.Channel = ADC_CHANNEL_5;
  sConfig.Rank = ADC_REGULAR_RANK_1;
  sConfig.SamplingTime = ADC_SAMPLETIME_24CYCLES_5;
  sConfig.SingleDiff = ADC_SINGLE_ENDED;
  sConfig.OffsetNumber = ADC_OFFSET_NONE;
  sConfig.Offset = 0;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN ADC1_Init 2 */
 
  /* USER CODE END ADC1_Init 2 */
 
}
 
/**
  * @brief SPI2 Initialization Function
  * @PAram None
  * @retval None
  */
static void MX_SPI2_Init(void)
{
 
  /* USER CODE BEGIN SPI2_Init 0 */
 
  /* USER CODE END SPI2_Init 0 */
 
  /* USER CODE BEGIN SPI2_Init 1 */
 
  /* USER CODE END SPI2_Init 1 */
  /* SPI2 parameter configuration*/
  hspi2.Instance = SPI2;
  hspi2.Init.Mode = SPI_MODE_MASTER;
  hspi2.Init.Direction = SPI_DIRECTION_1LINE;
  hspi2.Init.DataSize = SPI_DATASIZE_8BIT;
  hspi2.Init.CLKPolarity = SPI_POLARITY_LOW;
  hspi2.Init.CLKPhase = SPI_PHASE_1EDGE;
  hspi2.Init.NSS = SPI_NSS_SOFT;
  hspi2.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32;
  hspi2.Init.FirstBit = SPI_FIRSTBIT_MSB;
  hspi2.Init.TIMode = SPI_TIMODE_DISABLE;
  hspi2.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  hspi2.Init.CRCPolynomial = 7;
  hspi2.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE;
  hspi2.Init.NSSPMode = SPI_NSS_PULSE_ENABLE;
  if (HAL_SPI_Init(&hspi2) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN SPI2_Init 2 */
 
  /* USER CODE END SPI2_Init 2 */
 
}
 
/**
  * @brief USART2 Initialization Function
  * @PAram None
  * @retval None
  */
static void MX_USART2_UART_Init(void)
{
 
  /* USER CODE BEGIN USART2_Init 0 */
 
  /* USER CODE END USART2_Init 0 */
 
  /* USER CODE BEGIN USART2_Init 1 */
 
  /* USER CODE END USART2_Init 1 */
  huart2.Instance = USART2;
  huart2.Init.BaudRate = 115200;
  huart2.Init.WordLength = UART_WORDLENGTH_8B;
  huart2.Init.StopBits = UART_STOPBITS_1;
  huart2.Init.Parity = UART_PARITY_NONE;
  huart2.Init.Mode = UART_MODE_TX_RX;
  huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  if (HAL_UART_Init(&huart2) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART2_Init 2 */
 
  /* USER CODE END USART2_Init 2 */
 
}
 
/**
  * @brief GPIO Initialization Function
  * @PAram None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};
 
  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOH_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();
 
  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOC, GPIO_PIN_0|GPIO_PIN_3, GPIO_PIN_RESET);
 
  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET);
 
  /*Configure GPIO pin : B1_Pin */
  GPIO_InitStruct.Pin = B1_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct);
 
  /*Configure GPIO pins : PC0 PC3 */
  GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_3;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
 
  /*Configure GPIO pin : LD2_Pin */
  GPIO_InitStruct.Pin = LD2_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(LD2_GPIO_Port, &GPIO_InitStruct);
 
}
 
/* USER CODE BEGIN 4 */
 
/* USER CODE END 4 */
 
/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}
 
#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @PAram  file: pointer to the source file name
  * @PAram  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

]

DRicc2_1-1703650751742.png

 

PuTTY Output

 

 

Any help would be greatly appreciated.