cancel
Showing results for 
Search instead for 
Did you mean: 

SPI5 doesn't work when CM4 is in standalone mode on STM32MP157A-DK1

protonone
Associate

Hello everyone,

I would like to implement a basic spi communication with an sx1276 transceiver using CM4 as master in standalone mode in order to get the chip id. The spi5 configuration has been done using stm32cubeide which is the way i did it with another couple of mcus (stm32l476rg, stm32l432kc), and it has worked fine. 

Could anyone help me providing any advice with the following code or an example of a basic spi communication in that context (CM4 in standalone mode on STM32MP157A-DK1). What is wrong ?

 

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "openamp.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
IPCC_HandleTypeDef hipcc;

SPI_HandleTypeDef hspi5;

UART_HandleTypeDef huart3;

/* USER CODE BEGIN PV */
uint8_t ptr_rx = 0;
uint8_t rev_id = 0x42;
/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
void PeriphCommonClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_IPCC_Init(void);
static void MX_SPI5_Init(void);
static void MX_USART3_UART_Init(void);
int MX_OPENAMP_Init(int RPMsgRole, rpmsg_ns_bind_cb ns_bind_cb);
/* USER CODE BEGIN PFP */
#ifdef __GNUC__
/* With GCC, small printf (option LD Linker->Libraries->Small printf
   set to 'Yes') calls __io_putchar() */
#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif /* __GNUC__ */

#ifdef __GNUC__
#define GETCHAR_PROTOTYPE int __io_getchar (void)
#else
#define GETCHAR_PROTOTYPE int fgetc(FILE * f)
#endif /* __GNUC__ */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  if(IS_ENGINEERING_BOOT_MODE())
  {
    /* Configure the system clock */
    SystemClock_Config();
  }

  if(IS_ENGINEERING_BOOT_MODE())
  {
    /* Configure the peripherals common clocks */
    PeriphCommonClock_Config();
  }
  else
  {
    /* IPCC initialisation */
    MX_IPCC_Init();
    /* OpenAmp initialisation ---------------------------------*/
    MX_OPENAMP_Init(RPMSG_REMOTE, NULL);
  }

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_SPI5_Init();
  MX_USART3_UART_Init();
  /* USER CODE BEGIN 2 */
  while(1) {
  CLEAR_BIT(rev_id, (1 << 7));

      	  HAL_GPIO_WritePin(GPIOF, GPIO_PIN_6, GPIO_PIN_RESET);

      	  uint32_t res1 = HAL_SPI_Transmit(&hspi5, &rev_id, 1, 500);
      	  uint32_t res2 = HAL_SPI_Receive(&hspi5, &ptr_rx, 1, 500);


      	  if (res1 != HAL_OK || res2 != HAL_OK) {
      		  printf("SPI transmit/receive aborted");
      	  }

      	  HAL_GPIO_WritePin(GPIOF, GPIO_PIN_6, GPIO_PIN_SET);
      	  printf("Revision id: 0x%02X\r\n", ptr_rx);

      	  HAL_Delay(2000);
        }
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure LSE Drive Capability
  */
  HAL_PWR_EnableBkUpAccess();
  __HAL_RCC_LSEDRIVE_CONFIG(RCC_LSEDRIVE_MEDIUMHIGH);

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_CSI|RCC_OSCILLATORTYPE_HSI
                              |RCC_OSCILLATORTYPE_HSE|RCC_OSCILLATORTYPE_LSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS_DIG;
  RCC_OscInitStruct.LSEState = RCC_LSE_ON;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSIDivValue = RCC_HSI_DIV1;
  RCC_OscInitStruct.CSIState = RCC_CSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
  RCC_OscInitStruct.PLL2.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL2.PLLSource = RCC_PLL12SOURCE_HSE;
  RCC_OscInitStruct.PLL2.PLLM = 3;
  RCC_OscInitStruct.PLL2.PLLN = 66;
  RCC_OscInitStruct.PLL2.PLLP = 2;
  RCC_OscInitStruct.PLL2.PLLQ = 1;
  RCC_OscInitStruct.PLL2.PLLR = 1;
  RCC_OscInitStruct.PLL2.PLLFRACV = 0x1400;
  RCC_OscInitStruct.PLL2.PLLMODE = RCC_PLL_FRACTIONAL;
  RCC_OscInitStruct.PLL3.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL3.PLLSource = RCC_PLL3SOURCE_HSE;
  RCC_OscInitStruct.PLL3.PLLM = 2;
  RCC_OscInitStruct.PLL3.PLLN = 34;
  RCC_OscInitStruct.PLL3.PLLP = 2;
  RCC_OscInitStruct.PLL3.PLLQ = 17;
  RCC_OscInitStruct.PLL3.PLLR = 37;
  RCC_OscInitStruct.PLL3.PLLRGE = RCC_PLL3IFRANGE_1;
  RCC_OscInitStruct.PLL3.PLLFRACV = 6660;
  RCC_OscInitStruct.PLL3.PLLMODE = RCC_PLL_FRACTIONAL;
  RCC_OscInitStruct.PLL4.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL4.PLLSource = RCC_PLL4SOURCE_HSE;
  RCC_OscInitStruct.PLL4.PLLM = 4;
  RCC_OscInitStruct.PLL4.PLLN = 99;
  RCC_OscInitStruct.PLL4.PLLP = 6;
  RCC_OscInitStruct.PLL4.PLLQ = 8;
  RCC_OscInitStruct.PLL4.PLLR = 8;
  RCC_OscInitStruct.PLL4.PLLRGE = RCC_PLL4IFRANGE_0;
  RCC_OscInitStruct.PLL4.PLLFRACV = 0;
  RCC_OscInitStruct.PLL4.PLLMODE = RCC_PLL_INTEGER;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** RCC Clock Config
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_ACLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2
                              |RCC_CLOCKTYPE_PCLK3|RCC_CLOCKTYPE_PCLK4
                              |RCC_CLOCKTYPE_PCLK5;
  RCC_ClkInitStruct.AXISSInit.AXI_Clock = RCC_AXISSOURCE_PLL2;
  RCC_ClkInitStruct.AXISSInit.AXI_Div = RCC_AXI_DIV1;
  RCC_ClkInitStruct.MCUInit.MCU_Clock = RCC_MCUSSOURCE_PLL3;
  RCC_ClkInitStruct.MCUInit.MCU_Div = RCC_MCU_DIV1;
  RCC_ClkInitStruct.APB4_Div = RCC_APB4_DIV2;
  RCC_ClkInitStruct.APB5_Div = RCC_APB5_DIV4;
  RCC_ClkInitStruct.APB1_Div = RCC_APB1_DIV2;
  RCC_ClkInitStruct.APB2_Div = RCC_APB2_DIV2;
  RCC_ClkInitStruct.APB3_Div = RCC_APB3_DIV2;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Set the HSE division factor for RTC clock
  */
  __HAL_RCC_RTC_HSEDIV(24);
}

/**
  * @brief Peripherals Common Clock Configuration
  * @retval None
  */
void PeriphCommonClock_Config(void)
{
  RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};

  /** Initializes the common periph clock
  */
  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_CKPER;
  PeriphClkInit.CkperClockSelection = RCC_CKPERCLKSOURCE_HSE;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief IPCC Initialization Function
  * @PAram None
  * @retval None
  */
static void MX_IPCC_Init(void)
{

  /* USER CODE BEGIN IPCC_Init 0 */

  /* USER CODE END IPCC_Init 0 */

  /* USER CODE BEGIN IPCC_Init 1 */

  /* USER CODE END IPCC_Init 1 */
  hipcc.Instance = IPCC;
  if (HAL_IPCC_Init(&hipcc) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN IPCC_Init 2 */

  /* USER CODE END IPCC_Init 2 */

}

/**
  * @brief SPI5 Initialization Function
  * @PAram None
  * @retval None
  */
static void MX_SPI5_Init(void)
{

  /* USER CODE BEGIN SPI5_Init 0 */

  /* USER CODE END SPI5_Init 0 */

  /* USER CODE BEGIN SPI5_Init 1 */

  /* USER CODE END SPI5_Init 1 */
  /* SPI5 parameter configuration*/
  hspi5.Instance = SPI5;
  hspi5.Init.Mode = SPI_MODE_MASTER;
  hspi5.Init.Direction = SPI_DIRECTION_2LINES;
  hspi5.Init.DataSize = SPI_DATASIZE_8BIT;
  hspi5.Init.CLKPolarity = SPI_POLARITY_LOW;
  hspi5.Init.CLKPhase = SPI_PHASE_1EDGE;
  hspi5.Init.NSS = SPI_NSS_SOFT;
  hspi5.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
  hspi5.Init.FirstBit = SPI_FIRSTBIT_MSB;
  hspi5.Init.TIMode = SPI_TIMODE_DISABLE;
  hspi5.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  hspi5.Init.CRCPolynomial = 0x0;
  hspi5.Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
  hspi5.Init.NSSPolarity = SPI_NSS_POLARITY_LOW;
  hspi5.Init.FifoThreshold = SPI_FIFO_THRESHOLD_01DATA;
  hspi5.Init.TxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
  hspi5.Init.RxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
  hspi5.Init.MasterSSIdleness = SPI_MASTER_SS_IDLENESS_00CYCLE;
  hspi5.Init.MasterInterDataIdleness = SPI_MASTER_INTERDATA_IDLENESS_00CYCLE;
  hspi5.Init.MasterReceiverAutoSusp = SPI_MASTER_RX_AUTOSUSP_DISABLE;
  hspi5.Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_DISABLE;
  hspi5.Init.IOSwap = SPI_IO_SWAP_DISABLE;
  if (HAL_SPI_Init(&hspi5) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN SPI5_Init 2 */

  /* USER CODE END SPI5_Init 2 */

}

/**
  * @brief USART3 Initialization Function
  * @PAram None
  * @retval None
  */
static void MX_USART3_UART_Init(void)
{

  /* USER CODE BEGIN USART3_Init 0 */

  /* USER CODE END USART3_Init 0 */

  /* USER CODE BEGIN USART3_Init 1 */

  /* USER CODE END USART3_Init 1 */
  huart3.Instance = USART3;
  huart3.Init.BaudRate = 115200;
  huart3.Init.WordLength = UART_WORDLENGTH_8B;
  huart3.Init.StopBits = UART_STOPBITS_1;
  huart3.Init.Parity = UART_PARITY_NONE;
  huart3.Init.Mode = UART_MODE_TX_RX;
  huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart3.Init.OverSampling = UART_OVERSAMPLING_16;
  huart3.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  huart3.Init.ClockPrescaler = UART_PRESCALER_DIV1;
  huart3.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  if (HAL_UART_Init(&huart3) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_SetTxFifoThreshold(&huart3, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_SetRxFifoThreshold(&huart3, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_DisableFifoMode(&huart3) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART3_Init 2 */

  /* USER CODE END USART3_Init 2 */

}

/**
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void)
{

  /* DMA controller clock enable */
  __HAL_RCC_DMAMUX_CLK_ENABLE();
  __HAL_RCC_DMA1_CLK_ENABLE();

}

/**
  * @brief GPIO Initialization Function
  * @PAram None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOH_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();
  __HAL_RCC_GPIOF_CLK_ENABLE();

/* USER CODE BEGIN MX_GPIO_Init_2 */
  GPIO_InitTypeDef GPIO_InitStruct = {0};
      GPIO_InitStruct.Pin = GPIO_PIN_6;
      GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
      GPIO_InitStruct.Pull = GPIO_NOPULL;
      GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
      HAL_GPIO_Init(GPIOF, &GPIO_InitStruct);
      HAL_GPIO_WritePin(GPIOF, GPIO_PIN_6, GPIO_PIN_SET);
/* USER CODE END MX_GPIO_Init_2 */
}

/* USER CODE BEGIN 4 */
PUTCHAR_PROTOTYPE
{
  /* Place your implementation of fputc here */
  /* e.g. write a character to the USART3 and Loop until the end of transmission */
  HAL_UART_Transmit(&huart3, (uint8_t *)&ch, 1, 0xFFFF);

  return ch;
}


GETCHAR_PROTOTYPE
{
  uint8_t ch = 0;
  /* Clear the Overrun flag just before receiving the first character */
  __HAL_UART_CLEAR_OREFLAG(&huart3);

  HAL_UART_Receive(&huart3, (uint8_t *)&ch, 1, 0xFFFF);
  HAL_UART_Transmit(&huart3, (uint8_t *)&ch, 1, 0xFFFF);
  return ch;
}
/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @PAram  file: pointer to the source file name
  * @PAram  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

 

Many thanks.

 

0 REPLIES 0