cancel
Showing results for 
Search instead for 
Did you mean: 

DMA loses data in transmission, for multi-channel adc.

Ruồi
Associate III

Hello everyone, I use three adc blocks including ADC1, ADC2, ADC 3, and DMA to transmit data. However, DMA data transmission has lost data. Below is my code.  

#include "main.h"
#include "usb_device.h"
 
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
 
/* USER CODE END Includes */
 
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
 
/* USER CODE END PTD */
 
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
 
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
 
/* USER CODE END PM */
 
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
ADC_HandleTypeDef hadc2;
ADC_HandleTypeDef hadc3;
DMA_HandleTypeDef hdma_adc1;
DMA_HandleTypeDef hdma_adc2;
DMA_HandleTypeDef hdma_adc3;
 
/* USER CODE BEGIN PV */
 
/* USER CODE END PV */
 
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC1_Init(void);
static void MX_ADC2_Init(void);
static void MX_ADC3_Init(void);
/* USER CODE BEGIN PFP */
void Delay_us(uint32_t uSec);
/* USER CODE END PFP */
 
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint8_t receive_data[64];
uint8_t mystring[]="hello\r\n";
///
volatile uint8_t peak = 0;
volatile uint16_t adc_value1[2] = {0};
volatile uint16_t adc_value2[2] = {0};
volatile uint16_t adc_value3[1] = {0};
volatile uint8_t dmc1,dmc2, dmc3;
volatile uint32_t data[5];
 
 
///
char tager1[4098];
//char tager2[4098];
//char tager3[4098];
//char tager4[4098];
//char tager5[4098];
char cr[]="\n";
/* USER CODE END 0 */
 
/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */
 
  /* USER CODE END 1 */
 
  /* MCU Configuration--------------------------------------------------------*/
 
  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();
 
  /* USER CODE BEGIN Init */
 
  /* USER CODE END Init */
 
  /* Configure the system clock */
  SystemClock_Config();
 
  /* USER CODE BEGIN SysInit */
 
  /* USER CODE END SysInit */
 
  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_ADC1_Init();
  MX_ADC2_Init();
  MX_ADC3_Init();
  MX_USB_DEVICE_Init();
  /* USER CODE BEGIN 2 */
	HAL_GPIO_WritePin(GPIOD,GPIO_PIN_7,GPIO_PIN_RESET);
	HAL_GPIO_WritePin(GPIOA,GPIO_PIN_12,GPIO_PIN_SET);
	Delay_us(10);
	HAL_GPIO_WritePin(GPIOA,GPIO_PIN_12,GPIO_PIN_RESET);
	HAL_GPIO_WritePin(GPIOD,GPIO_PIN_7,GPIO_PIN_SET);
  /* USER CODE END 2 */
	HAL_ADC_Start_DMA(&hadc3,(uint32_t*)adc_value3,1);
	Delay_us(600);
	HAL_ADC_Start_DMA(&hadc2,(uint32_t*)adc_value2,2);
	Delay_us(600);
	HAL_ADC_Start_DMA(&hadc1,(uint32_t*)adc_value1,2);
	Delay_us(600);
  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */
		while(peak == 0);
		//lay mau
 
		// xoa tu 
		HAL_GPIO_WritePin(GPIOD,GPIO_PIN_12,GPIO_PIN_SET);
		//Delay_us(10);
		sprintf(tager1,"%dS%dA%dB%dC%dD\n",adc_value1[0],adc_value2[0],adc_value3[0],adc_value1[1],adc_value2[1]);
		CDC_Transmit_FS(tager1,strlen((const char*)tager1));
		Delay_us(5);
		
		HAL_GPIO_WritePin(GPIOD,GPIO_PIN_7,GPIO_PIN_RESET);//ADC STATUS
		Delay_us(10);
		peak = 0;
		HAL_GPIO_WritePin(GPIOD,GPIO_PIN_12,GPIO_PIN_RESET);//DUMP
		HAL_GPIO_WritePin(GPIOD,GPIO_PIN_7,GPIO_PIN_SET);
    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}
 
//
 
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
	peak = 1;
}
 
void Delay_us(uint32_t uSec)
{
	uint32_t uSecVar=uSec;
	uSecVar=uSecVar*((SystemCoreClock/1000000)/3);
	while(uSecVar--);
}

void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
 
  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 8;
  RCC_OscInitStruct.PLL.PLLN = 336;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 7;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV4;
 
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
  {
    Error_Handler();
  }
}

void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
 
  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 8;
  RCC_OscInitStruct.PLL.PLLN = 336;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 7;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV4;
 
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
  {
    Error_Handler();
  }
}
 
/**
  * @brief ADC1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_ADC1_Init(void)
{
 
  /* USER CODE BEGIN ADC1_Init 0 */
 
  /* USER CODE END ADC1_Init 0 */
 
  ADC_ChannelConfTypeDef sConfig = {0};
 
  /* USER CODE BEGIN ADC1_Init 1 */
 
  /* USER CODE END ADC1_Init 1 */
  /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
  */
  hadc1.Instance = ADC1;
  hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
  hadc1.Init.Resolution = ADC_RESOLUTION_10B;
  hadc1.Init.ScanConvMode = ENABLE;
  hadc1.Init.ContinuousConvMode = ENABLE;
  hadc1.Init.DiscontinuousConvMode = DISABLE;
  hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc1.Init.NbrOfConversion = 2;
  hadc1.Init.DMAContinuousRequests = ENABLE;
  hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  if (HAL_ADC_Init(&hadc1) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  */
  sConfig.Channel = ADC_CHANNEL_0;
  sConfig.Rank = 1;
  sConfig.SamplingTime = ADC_SAMPLETIME_84CYCLES;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  */
  sConfig.Channel = ADC_CHANNEL_4;
  sConfig.Rank = 2;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN ADC1_Init 2 */
 
  /* USER CODE END ADC1_Init 2 */
 
}
 

15 REPLIES 15

DMA overwrites values in same time as you print. Normal usage ADC DMA is for store buffered samples , and not one measurement in cycle.

Minimal condition for your code is use double buffer and in callbacks switch valid values marker...

Try check you schematics with ADC pool for conversion method. After this works go DMA.

Is there a way to disable DMA and ADC when the HAL_ADC_ConvCpltCallback function is called?

Yes two: setup ADC to one seq or in HAL_ADC_ConvCpltCallback Stop ADC

Hello,

The numbers below are the results of channels A0, A1, A2, A4, A5 of the same ADC 1. The input signal is the same. so why is the data of channels A4 and A5 different from A0, A1, A2. The figures for channels A0, A1 and A2 are correct.

Is it possible that the A4 and A5 channels are broken, I have replaced it with another kit but the result is no different, is it due to the code, or a property of the STM32F407.

273	271	272	1023	1023
318	320	320	1023	1023
310	321	320	278	281
317	317	325	1023	1023
312	311	313	1023	1023
328	324	327	1023	1023
298	302	301	669	671
296	295	298	1023	1023
299	303	299	333	336
286	285	288	319	317
295	294	296	878	878
282	282	283	381	384
318	319	318	1023	1023
294	293	294	1023	1023

this is all my code.