cancel
Showing results for 
Search instead for 
Did you mean: 

CAN communication not working

John_RENRUS
Associate II

Hello everyone,

I’m currently experiencing difficulties with setting up CAN communication on my STM32F4 microcontroller. Despite having configured the CAN interface and connecting it to a CAN transceiver, I observe no activity on my designated can_tx and can_rx pins. I have a second node connected for communication testing.

/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "usb_device.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "stm32f4xx_hal_dac.h" #include "stm32f4xx_hal_adc.h" #include "usbd_cdc_if.h" #include "stm32f4xx_hal_can.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ #define TRUE_THRESHOLD 0.4588235294117647 //(6,5V/42,5V)*3.0V ADC Schwellenwert nach Skalierung #define ADC_VOLTAGE_FULL_SCALE 3.0 // Maximal erreichbare Spannung fuer ADC // Am Anfang Ihres Programms im User Define Bereich #define DAC_OUTPUT_VOLTAGE 0.4588235294117647 //(6,5V/42,5V)*3.0V oder welcher Wert gebraucht wird #define DAC_VOLTAGE_FULL_SCALE 3.0 // oder welcher Wert gebraucht wird /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ ADC_HandleTypeDef hadc1; ADC_HandleTypeDef hadc2; CAN_HandleTypeDef hcan1; CAN_HandleTypeDef hcan2; DAC_HandleTypeDef hdac; /* USER CODE BEGIN PV */ CAN_TxHeaderTypeDef myTxHeader; uint8_t TxData[8]; uint32_t TxMailbox; uint32_t adcValue1, adcValue2; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_CAN1_Init(void); static void MX_CAN2_Init(void); static void MX_DAC_Init(void); static void MX_ADC1_Init(void); static void MX_ADC2_Init(void); /* USER CODE BEGIN PFP */ void DAC_SetComparisonVoltage(void); void ADC_Scan_RegularChannels(void); void Send_CAN_Message(void); void Send_USB_Data(void); void ToggleErrorLED(uint8_t number_of_blinks); /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_CAN1_Init(); MX_CAN2_Init(); MX_DAC_Init(); MX_USB_DEVICE_Init(); MX_ADC1_Init(); MX_ADC2_Init(); /* USER CODE BEGIN 2 */ DAC_SetComparisonVoltage(); // Setze die Vergleichsspannung per DAC /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ ADC_Scan_RegularChannels(); // Lese ADC-Werte // ueberpruefe, ob die Spannung unter/ueber dem Schwellenwert ist if (adcValue1 > TRUE_THRESHOLD / ADC_VOLTAGE_FULL_SCALE * 4095) { HAL_GPIO_WritePin(GPIOD, GPIO_PIN_13, GPIO_PIN_SET); // Orange LED anschalten } else { HAL_GPIO_WritePin(GPIOD, GPIO_PIN_13, GPIO_PIN_RESET); // Orange LED ausschalten } Send_CAN_Message(); // Sende Nachricht über CAN Send_USB_Data(); //test massage über usb HAL_Delay(50); // 1/50 Sekunde warten } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 4; RCC_OscInitStruct.PLL.PLLN = 168; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 7; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { ToggleErrorLED(2); // Toggle LED zweimal für Fehler in SystemClock_Config } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV2; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { ToggleErrorLED(3); // Toggle LED dreimal für Fehler in der ClockConfig } } /** * @brief ADC1 Initialization Function * None * @retval None */ static void MX_ADC1_Init(void) { /* USER CODE BEGIN ADC1_Init 0 */ /* USER CODE END ADC1_Init 0 */ ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC1_Init 1 */ /* USER CODE END ADC1_Init 1 */ /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) */ hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2; hadc1.Init.Resolution = ADC_RESOLUTION_12B; hadc1.Init.ScanConvMode = DISABLE; hadc1.Init.ContinuousConvMode = DISABLE; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.NbrOfConversion = 1; hadc1.Init.DMAContinuousRequests = DISABLE; hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV; if (HAL_ADC_Init(&hadc1) != HAL_OK) { ToggleErrorLED(4); // Toggle LED viermal für Fehler in ADC1_Init } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_1; sConfig.Rank = 1; sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { ToggleErrorLED(5); // Toggle LED fünfmal für Fehler bei der Kanal-Konfiguration } } /** * @brief ADC2 Initialization Function * None * @retval None */ static void MX_ADC2_Init(void) { /* USER CODE BEGIN ADC2_Init 0 */ /* USER CODE END ADC2_Init 0 */ ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC2_Init 1 */ /* USER CODE END ADC2_Init 1 */ /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) */ hadc2.Instance = ADC2; hadc2.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2; hadc2.Init.Resolution = ADC_RESOLUTION_12B; hadc2.Init.ScanConvMode = DISABLE; hadc2.Init.ContinuousConvMode = DISABLE; hadc2.Init.DiscontinuousConvMode = DISABLE; hadc2.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc2.Init.NbrOfConversion = 1; hadc2.Init.DMAContinuousRequests = DISABLE; hadc2.Init.EOCSelection = ADC_EOC_SINGLE_CONV; if (HAL_ADC_Init(&hadc2) != HAL_OK) { ToggleErrorLED(6); // Toggle LED sechsmal für Fehler in ADC2_Init } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_2; sConfig.Rank = 1; sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES; if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK) { ToggleErrorLED(7); // Toggle LED siebenmal für Fehler bei der Kanal-Konfiguration } } /** * @brief CAN1 Initialization Function * None * @retval None */ static void MX_CAN1_Init(void) { /* USER CODE BEGIN CAN1_Init 0 */ /* USER CODE END CAN1_Init 0 */ /* USER CODE BEGIN CAN1_Init 1 */ /* USER CODE END CAN1_Init 1 */ hcan1.Instance = CAN1; hcan1.Init.Prescaler = 6; hcan1.Init.Mode = CAN_MODE_NORMAL; hcan1.Init.SyncJumpWidth = CAN_SJW_1TQ; hcan1.Init.TimeSeg1 = CAN_BS1_11TQ; hcan1.Init.TimeSeg2 = CAN_BS2_2TQ; hcan1.Init.TimeTriggeredMode = DISABLE; hcan1.Init.AutoBusOff = DISABLE; hcan1.Init.AutoWakeUp = DISABLE; hcan1.Init.AutoRetransmission = ENABLE; hcan1.Init.ReceiveFifoLocked = DISABLE; hcan1.Init.TransmitFifoPriority = DISABLE; if (HAL_CAN_Init(&hcan1) != HAL_OK) { ToggleErrorLED(8); // Toggle LED achtmal für Fehler in CAN1_Init } } /** * @brief CAN2 Initialization Function * None * @retval None */ static void MX_CAN2_Init(void) { /* USER CODE BEGIN CAN2_Init 0 */ /* USER CODE END CAN2_Init 0 */ /* USER CODE BEGIN CAN2_Init 1 */ /* USER CODE END CAN2_Init 1 */ hcan2.Instance = CAN2; hcan2.Init.Prescaler = 6; hcan2.Init.Mode = CAN_MODE_NORMAL; hcan2.Init.SyncJumpWidth = CAN_SJW_1TQ; hcan2.Init.TimeSeg1 = CAN_BS1_11TQ; hcan2.Init.TimeSeg2 = CAN_BS2_2TQ; hcan2.Init.TimeTriggeredMode = DISABLE; hcan2.Init.AutoBusOff = DISABLE; hcan2.Init.AutoWakeUp = DISABLE; hcan2.Init.AutoRetransmission = ENABLE; hcan2.Init.ReceiveFifoLocked = DISABLE; hcan2.Init.TransmitFifoPriority = DISABLE; if (HAL_CAN_Init(&hcan2) != HAL_OK) { ToggleErrorLED(9); // Toggle LED neunmal für Fehler in CAN2_Init } } /** * @brief DAC Initialization Function * None * @retval None */ static void MX_DAC_Init(void) { /* USER CODE BEGIN DAC_Init 0 */ /* USER CODE END DAC_Init 0 */ DAC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN DAC_Init 1 */ /* USER CODE END DAC_Init 1 */ /** DAC Initialization */ hdac.Instance = DAC; if (HAL_DAC_Init(&hdac) != HAL_OK) { ToggleErrorLED(10); // Toggle LED zehnmal für Fehler in DAC_Init } /** DAC channel OUT1 config */ sConfig.DAC_Trigger = DAC_TRIGGER_NONE; sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; if (HAL_DAC_ConfigChannel(&hdac, &sConfig, DAC_CHANNEL_1) != HAL_OK) { ToggleErrorLED(11); // Toggle LED elfmal für Fehler bei der Kanal-Konfiguration } } /** * @brief GPIO Initialization Function * None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* USER CODE BEGIN MX_GPIO_Init_1 */ /* USER CODE END MX_GPIO_Init_1 */ /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOH_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOD_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOD, GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15, GPIO_PIN_RESET); /*Configure GPIO pin : PA0 */ GPIO_InitStruct.Pin = GPIO_PIN_0; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pins : PD12 PD13 PD14 PD15 */ GPIO_InitStruct.Pin = GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); /* USER CODE BEGIN MX_GPIO_Init_2 */ /* USER CODE END MX_GPIO_Init_2 */ } /* USER CODE BEGIN 4 */ void DAC_SetComparisonVoltage(void) { HAL_DAC_Start(&hdac, DAC_CHANNEL_1); HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, (uint32_t)(DAC_OUTPUT_VOLTAGE / DAC_VOLTAGE_FULL_SCALE * 4095)); } void ADC_Scan_RegularChannels(void) { HAL_ADC_Start(&hadc1); if (HAL_ADC_PollForConversion(&hadc1, 100) == HAL_OK) { adcValue1 = HAL_ADC_GetValue(&hadc1); } HAL_ADC_Start(&hadc2); if (HAL_ADC_PollForConversion(&hadc2, 100) == HAL_OK) { adcValue2 = HAL_ADC_GetValue(&hadc2); } } unsigned int value = 0; void Send_CAN_Message(void) { myTxHeader.StdId = 0x321; myTxHeader.ExtId = 0x00; myTxHeader.RTR = CAN_RTR_DATA; myTxHeader.IDE = CAN_ID_STD; myTxHeader.DLC = 8; myTxHeader.TransmitGlobalTime = DISABLE; value = HAL_CAN_AddTxMessage(&hcan1, &myTxHeader, TxData, &TxMailbox); if (value != HAL_OK) { ToggleErrorLED(2); // Toggle LED zwölfmal für Fehler bei Send_CAN_Message } } /* Beispiel: Senden einer Testnachricht ueber USB CDC */ void Send_USB_Data(void) { HAL_GPIO_TogglePin(GPIOD, GPIO_PIN_15); // Toggle der blauen LED // Berechnung des Spannungswertes uint32_t adcValue = adcValue1; float voltageMeasured = (adcValue / 4095.0) * 3.0; // Skalierung für 3.0V statt 3.3V, auf die Hardware anpassen // Offset-Korrektur basierend auf Beobachtungen float offsetCorrection = 0.0; // Anpassen des Offsets basierend auf gemessener Spannung if (voltageMeasured < 1.0) { offsetCorrection = 0.030 * voltageMeasured; // zu niedrige Werte offset-Korrektur } else if (voltageMeasured < 2.0) { offsetCorrection = 0.025 * voltageMeasured; // mittlere Werte offset-Korrektur } else { offsetCorrection = 0.022 * voltageMeasured; // höhere Werte offset-Korrektur } // Endgültige Korrektur der Messspannung float correctedVoltage = voltageMeasured - offsetCorrection; // Berechnung der tatsächlichen Spannung, basierend auf Spannungsteiler float actualVoltage = (correctedVoltage / 3.0) * 42.5; // Holen Sie sich den aktuellen Zeitstempel uint32_t timestamp = HAL_GetTick(); // Formatieren Sie die Nachricht im CSV-Format char message[50]; snprintf(message, sizeof(message), "%u, %.4f\n", timestamp, actualVoltage); // Senden Sie die formatierte Nachricht über USB CDC_Transmit_FS((uint8_t*)message, strlen(message)); } void ToggleErrorLED(uint8_t number_of_blinks) { for(uint8_t i = 0; i < number_of_blinks * 2; i++) // Immer gerade Anzahl, um LED zurückzusetzen { HAL_GPIO_TogglePin(GPIOD, GPIO_PIN_12); HAL_Delay(400); } } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ // HAL_GPIO_TogglePin(GPIOD, GPIO_PIN_12); // Fehleranzeige auch hier __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * file: pointer to the source file name * line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */
View more

Edited to apply code formatting - please see How to insert source code for future reference.

11 REPLIES 11
Billy OWEN
ST Employee

Hi @John_RENRUS 

 

This post has been escalated to the ST Online Support Team for additional assistance.  We'll contact you directly.

 

Regards,

Billy

Karl Yamashita
Principal

I've looked at your code and I see you're missing some function calls

  • HAL_CAN_ConfigFilter
  • HAL_CAN_Start
  • HAL_CAN_ActivateNotification
/* function: Set CAN filter to pass all ID's input: hcan instance output: none */ void CAN_SetFilter(CAN_HandleTypeDef *hcan) { static CAN_FilterTypeDef sFilterConfig; if(hcan == &hcan1) { sFilterConfig.FilterBank = 0; } #ifdef HCAN2 else if(hcan == &hcan2) { sFilterConfig.FilterBank = 14; } #endif sFilterConfig.FilterMode = CAN_FILTERMODE_IDMASK; sFilterConfig.FilterScale = CAN_FILTERSCALE_32BIT; sFilterConfig.FilterIdHigh = 0x0000; sFilterConfig.FilterIdLow = 0x0000; sFilterConfig.FilterMaskIdHigh = 0x0000; sFilterConfig.FilterMaskIdLow = 0x0000; sFilterConfig.FilterFIFOAssignment = CAN_FILTER_FIFO0; sFilterConfig.FilterActivation = ENABLE; if(HAL_CAN_ConfigFilter(hcan, &sFilterConfig) != HAL_OK) { Error_Handler(); } if(HAL_CAN_Start(hcan) != HAL_OK) { Error_Handler(); } if (HAL_CAN_ActivateNotification(hcan, CAN_IT_RX_FIFO0_MSG_PENDING | CAN_IT_TX_MAILBOX_EMPTY ) != HAL_OK) // enables CAN notification. { Error_Handler(); } }
View more

 

Don't worry, I won't byte.
TimerCallback tutorial! | UART and DMA Idle tutorial!

If you find my solution useful, please click the Accept as Solution so others see the solution.