2024-07-10 10:00 AM
I am trying to send a message through UART based on Timer 6 interrupt on STM32L432KC microprocessor. The prescaler is set to 39999 and the auto reload is set to 19999 to get an interrupt every 10 seconds. When i upload the code, I get the first interrupt 10 seconds in but it never triggers again. I changed timers to see if Timer 6 was clashing with something that I am already using.
I have found that when the Timer 6 counter hits ARR for the first time and interrupt triggers, The TIM6->SR stays 0 but when counter hits ARR for the second time, TIM6->SR turns 1 and interrupt does not trigger which the reference manual says its the flag UIF (Update Interrupt Pending). I was thinking maybe its a hardware issue so tried changing the timers but same story. In the same code I am also doing ADC DMA conversions using Timer 1 interrupt which is set to trigger at 100Hz. That works without issues. The callback function is the same for all Timer interrupts so I am not sure if that has an effect on my problem.
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
// C Includes
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
// 3rd-Party Includes
#include <note.h>
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
#define NOTE_I2C_BUFFER_SIZE 0xFF
#define NOTE_PRODUCT_UID "com.dclimate.kadir.efecik:notecardtest"
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define ADC_SAMPLE_BUFFER_SIZE 1000
#define ADC_RAW_TO_VOLTAGE 0.0008058608f
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;
I2C_HandleTypeDef hi2c1;
TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim6;
UART_HandleTypeDef huart1;
UART_HandleTypeDef huart2;
/* USER CODE BEGIN PV */
float adcData[ADC_SAMPLE_BUFFER_SIZE];
uint16_t adcTempData;
uint16_t indexCounter = 0;
// Necessary for Notecard I/O functionality
static uint8_t serialInterruptBuffer[1];
static volatile size_t serialFillIndex = 0;
static volatile size_t serialDrainIndex = 0;
static uint32_t serialOverruns = 0;
static char serialBuffer[512];
static bool uart1Initialized = false;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_USART2_UART_Init(void);
static void MX_ADC1_Init(void);
static void MX_I2C1_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_TIM1_Init(void);
static void MX_TIM6_Init(void);
/* USER CODE BEGIN PFP */
// Note Serial Interface
bool noteSerialReset(void);
void noteSerialTransmit(uint8_t *text, size_t len, bool flush);
bool noteSerialAvailable(void);
char noteSerialReceive(void);
size_t noteDebugSerialOutput(const char *message);
// Serial Debug
size_t noteDebugSerialOutput(const char *message);
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc) {
adcData[indexCounter] = (ADC_RAW_TO_VOLTAGE * adcTempData) * 3 + 6;
indexCounter++;
if (indexCounter >= ADC_SAMPLE_BUFFER_SIZE) {
indexCounter = 0;
}
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_USART2_UART_Init();
MX_ADC1_Init();
MX_I2C1_Init();
MX_USART1_UART_Init();
MX_TIM1_Init();
MX_TIM6_Init();
/* USER CODE BEGIN 2 */
HAL_ADCEx_Calibration_Start(&hadc1, ADC_SINGLE_ENDED);
HAL_ADC_Start_DMA(&hadc1,(uint32_t *) &adcTempData, 1);
HAL_TIM_Base_Start(&htim1);
HAL_TIM_Base_Start_IT(&htim6);
// Set Notecard System Interface
NoteSetFn(malloc, free, HAL_Delay, HAL_GetTick);
// Set Notecard Serial Interface
NoteSetFnSerial(noteSerialReset, noteSerialTransmit, noteSerialAvailable, noteSerialReceive);
// Configure device with ProductUID
J *req = NoteNewRequest("hub.set");
JAddStringToObject(req, "product", NOTE_PRODUCT_UID);
JAddStringToObject(req, "mode", "continuous");
NoteRequest(req);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
HAL_Delay(100);
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK)
{
Error_Handler();
}
/** Configure LSE Drive Capability
*/
HAL_PWR_EnableBkUpAccess();
__HAL_RCC_LSEDRIVE_CONFIG(RCC_LSEDRIVE_LOW);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSE|RCC_OSCILLATORTYPE_MSI;
RCC_OscInitStruct.LSEState = RCC_LSE_ON;
RCC_OscInitStruct.MSIState = RCC_MSI_ON;
RCC_OscInitStruct.MSICalibrationValue = 0;
RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_6;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_MSI;
RCC_OscInitStruct.PLL.PLLM = 1;
RCC_OscInitStruct.PLL.PLLN = 40;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7;
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK)
{
Error_Handler();
}
/** Enable MSI Auto calibration
*/
HAL_RCCEx_EnableMSIPLLMode();
}
/**
* @brief ADC1 Initialization Function
* @PAram None
* @retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Common config
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV2;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
hadc1.Init.LowPowerAutoWait = DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIG_T1_TRGO;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
hadc1.Init.DMAContinuousRequests = ENABLE;
hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED;
hadc1.Init.OversamplingMode = DISABLE;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_6;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_247CYCLES_5;
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
sConfig.Offset = 0;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* @brief I2C1 Initialization Function
* @PAram None
* @retval None
*/
static void MX_I2C1_Init(void)
{
/* USER CODE BEGIN I2C1_Init 0 */
/* USER CODE END I2C1_Init 0 */
/* USER CODE BEGIN I2C1_Init 1 */
/* USER CODE END I2C1_Init 1 */
hi2c1.Instance = I2C1;
hi2c1.Init.Timing = 0x10909CEC;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
Error_Handler();
}
/** Configure Analogue filter
*/
if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
{
Error_Handler();
}
/** Configure Digital filter
*/
if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C1_Init 2 */
/* USER CODE END I2C1_Init 2 */
}
/**
* @brief TIM1 Initialization Function
* @PAram None
* @retval None
*/
static void MX_TIM1_Init(void)
{
/* USER CODE BEGIN TIM1_Init 0 */
/* USER CODE END TIM1_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM1_Init 1 */
/* USER CODE END TIM1_Init 1 */
htim1.Instance = TIM1;
htim1.Init.Prescaler = 3200-1;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 100-1;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM1_Init 2 */
/* USER CODE END TIM1_Init 2 */
}
/**
* @brief TIM6 Initialization Function
* @PAram None
* @retval None
*/
static void MX_TIM6_Init(void)
{
/* USER CODE BEGIN TIM6_Init 0 */
/* USER CODE END TIM6_Init 0 */
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM6_Init 1 */
/* USER CODE END TIM6_Init 1 */
htim6.Instance = TIM6;
htim6.Init.Prescaler = 40000-1;
htim6.Init.CounterMode = TIM_COUNTERMODE_UP;
htim6.Init.Period = 20000-1;
htim6.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim6) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim6, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM6_Init 2 */
/* USER CODE END TIM6_Init 2 */
}
/**
* @brief USART1 Initialization Function
* @PAram None
* @retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
// Gaurantee idempotence
if (uart1Initialized) { return; }
uart1Initialized = true;
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 9600;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
// Reset our buffer management
serialFillIndex = serialDrainIndex = serialOverruns = 0;
// Start the inbound receive
HAL_UART_Receive_IT(&huart1, serialInterruptBuffer, sizeof(serialInterruptBuffer));
/* USER CODE END USART1_Init 2 */
}
/**
* @brief USART2 Initialization Function
* @PAram None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Channel1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
}
/**
* @brief GPIO Initialization Function
* @PAram None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LD3_GPIO_Port, LD3_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : LD3_Pin */
GPIO_InitStruct.Pin = LD3_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LD3_GPIO_Port, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
size_t noteDebugSerialOutput(const char *message) {
static const size_t USART2_TIMEOUT = 250;
size_t result = 0;
HAL_StatusTypeDef status = HAL_UART_Transmit(&huart2, (uint8_t *)message, strlen(message), USART2_TIMEOUT);
if (HAL_OK == status) {
result = sizeof(message);
} else {
result = 0;
}
return result;
}
void noteSerial_UART_IRQHandler(UART_HandleTypeDef *huart) {
// See if the transfer is completed
if (huart->RxXferCount == 0) {
if (serialFillIndex < sizeof(serialBuffer)) {
if (serialFillIndex+1 == serialDrainIndex) {
++serialOverruns;
} else {
serialBuffer[serialFillIndex++] = serialInterruptBuffer[0];
}
} else {
if (serialDrainIndex == 1) {
++serialOverruns;
} else {
serialBuffer[0] = serialInterruptBuffer[0];
serialFillIndex = 1;
}
}
}
// Start another receive
HAL_UART_Receive_IT(&huart1, (uint8_t *) &serialInterruptBuffer, sizeof(serialInterruptBuffer));
}
void MX_USART1_UART_DeInit(void) {
if (!uart1Initialized) { return; }
uart1Initialized = false;
HAL_UART_DeInit(&huart1);
}
bool noteSerialReset() {
MX_USART1_UART_DeInit();
MX_USART1_UART_Init();
return true;
}
void noteSerialTransmit(uint8_t *text, size_t len, bool flush) {
HAL_UART_Transmit(&huart1, text, len, 5000);
}
bool noteSerialAvailable() {
return (serialFillIndex != serialDrainIndex);
}
char noteSerialReceive() {
char data;
while (!noteSerialAvailable());
if (serialDrainIndex < sizeof(serialBuffer)) {
data = serialBuffer[serialDrainIndex++];
} else {
data = serialBuffer[0];
serialDrainIndex = 1;
}
return data;
}
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
// If its triggered by timer 7 which should be every 10 secs
if (htim == &htim6){
J *req = NoteNewRequest("note.add");
if (req != NULL) {
JAddStringToObject(req, "file", "sensors.qo");
JAddBoolToObject(req, "sync", true);
J *body = JCreateObject();
if (body != NULL) {
if (indexCounter==0){
JAddNumberToObject(body, "voltage", adcData[ADC_SAMPLE_BUFFER_SIZE-1]);
}
else {
JAddNumberToObject(body, "voltage", adcData[indexCounter-1]);
}
JAddItemToObject(req, "body", body);
}
NoteRequest(req);
}
}
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @PAram file: pointer to the source file name
* @PAram line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
Solved! Go to Solution.
2024-07-10 04:48 PM
Debug your code, hit pause, examine where the code is at. More than likely it's stuck in an interrupt somewhere and/or the code you're executing in the callback doesn't have the effect you expect. Examine the state of TIM6->CNT to verify it's still active and counting.
There's nothing wrong with your TIM6 setup that I can see.
> J *req = NoteNewRequest("note.add");
Note that this almost certainly causes a memory leak as you call it every callback, in addition to calling it at the global scope. Can't see the code for it though, so just a guess.
2024-07-10 04:48 PM
Debug your code, hit pause, examine where the code is at. More than likely it's stuck in an interrupt somewhere and/or the code you're executing in the callback doesn't have the effect you expect. Examine the state of TIM6->CNT to verify it's still active and counting.
There's nothing wrong with your TIM6 setup that I can see.
> J *req = NoteNewRequest("note.add");
Note that this almost certainly causes a memory leak as you call it every callback, in addition to calling it at the global scope. Can't see the code for it though, so just a guess.
2024-07-11 01:27 PM
I did that and It would always stop in a HAL delay which I assumed was from the HAL_delay function in the main infinite loop but apparently NoteRequest never exits waiting the UART to time out so it gets stuck in the very first timer interrupt. I realized after you mentioned that its probably already stuck in an interrupt.
Thank you.