2024-07-05 01:17 AM
Hello Community,
I'm working on a project and could use your help. I'm trying to make a sine wave with a changing frequency from 600 Hz to 5 kHz using STM32 microcontroller(STM32L073RZT) with 32 MHz as sysclk.
This are my configurations. Where this r2r pins are DAC bits.
I am not able to generate sine wave more than 280 Hz but i want to generate till 2 KHz.
Please suggest if I'm doing something wrong or if anyone has a good idea on how to overcome this issue.
Code:
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include <stdio.h>
#include "stm32l0xx.h"
#include <math.h>
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define SINE_TABLE_SIZE 256
void output_to_dac(uint16_t value);
volatile uint32_t Index = 0;
volatile uint32_t stepSize = 1;
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
TIM_HandleTypeDef htim2;
UART_HandleTypeDef huart2;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_TIM2_Init(void);
static void MX_USART2_UART_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
const uint16_t sineLookupTable[] = {
128, 131, 134, 137, 140, 143, 146, 149, 152, 155,
158, 162, 165, 167, 170, 173, 176, 179, 182, 185,
188, 190, 193, 196, 198, 201, 203, 206, 208, 211,
213, 215, 218, 220, 222, 224, 226, 228, 230, 232,
234, 235, 237, 238, 240, 241, 243, 244, 245, 246,
248, 249, 250, 250, 251, 252, 253, 253, 254, 254,
254, 255, 255, 255, 255, 255, 255, 255, 254, 254,
254, 253, 253, 252, 251, 250, 250, 249, 248, 246,
245, 244, 243, 241, 240, 238, 237, 235, 234, 232,
230, 228, 226, 224, 222, 220, 218, 215, 213, 211,
208, 206, 203, 201, 198, 196, 193, 190, 188, 185,
182, 179, 176, 173, 170, 167, 165, 162, 158, 155,
152, 149, 146, 143, 140, 137, 134, 131, 128, 124,
121, 118, 115, 112, 109, 106, 103, 100, 97, 93,
90, 88, 85, 82, 79, 76, 73, 70, 67, 65,
62, 59, 57, 54, 52, 49, 47, 44, 42, 40,
37, 35, 33, 31, 29, 27, 25, 23, 21, 20,
18, 17, 15, 14, 12, 11, 10, 9, 7, 6,
5, 5, 4, 3, 2, 2, 1, 1, 1, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 2,
2, 3, 4, 5, 5, 6, 7, 9, 10, 11,
12, 14, 15, 17, 18, 20, 21, 23, 25, 27,
29, 31, 33, 35, 37, 40, 42, 44, 47, 49,
52, 54, 57, 59, 62, 65, 67, 70, 73, 76,
79, 82, 85, 88, 90, 93, 97, 100, 103, 106,
109, 112, 115, 118, 121, 124};
void setFrequency(uint32_t frequency) {
printf("1Timer Period for %u Hz\n", frequency);
uint32_t timer_period = (32000000 / (SINE_TABLE_SIZE * frequency)) - 1;
printf("Timer Period for %u Hz: %u\n", frequency, timer_period);
__HAL_TIM_SET_AUTORELOAD(&htim2, timer_period);
}
void output_to_dac(uint16_t value){
HAL_GPIO_WritePin(GPIOB,r2r_0_Pin,(value & 0x01) ? GPIO_PIN_SET : GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOB,r2r_1_Pin,(value & 0x02) ? GPIO_PIN_SET : GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOB,r2r_2_Pin,(value & 0x04) ? GPIO_PIN_SET : GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOB,r2r_3_Pin,(value & 0x08) ? GPIO_PIN_SET : GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOB,r2r_4_Pin,(value & 0x10) ? GPIO_PIN_SET : GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOB,r2r_5_Pin,(value & 0x20) ? GPIO_PIN_SET : GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOB,r2r_6_Pin,(value & 0x40) ? GPIO_PIN_SET : GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOB,r2r_7_Pin,(value & 0x80) ? GPIO_PIN_SET : GPIO_PIN_RESET);
}
int _write(int file, char *ptr, int len) {
HAL_UART_Transmit(&huart2, (uint8_t*)ptr, len, HAL_MAX_DELAY);
return len;
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_TIM2_Init();
MX_USART2_UART_Init();
HAL_TIM_Base_Start_IT(&htim2);
/* USER CODE BEGIN 2 */
printf("Start\n");
setFrequency(290);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLLMUL_4;
RCC_OscInitStruct.PLL.PLLDIV = RCC_PLLDIV_2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART2;
PeriphClkInit.Usart2ClockSelection = RCC_USART2CLKSOURCE_PCLK1;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief TIM2 Initialization Function
* @PAram None
* @retval None
*/
static void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 0;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
}
// Timer interrupt callback
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
static uint32_t sample_index = 0;
if (htim->Instance == TIM2) {
output_to_dac(sineLookupTable[sample_index]);
sample_index = (sample_index + 1) % SINE_TABLE_SIZE;
HAL_GPIO_TogglePin(GPIOA,GPIO_PIN_0);
}
}
/**
* @brief USART2 Initialization Function
* @PAram None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @PAram None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, r2r_0_Pin|r2r_1_Pin|r2r_3_Pin|r2r_2_Pin
|r2r_4_Pin|r2r_5_Pin|r2r_6_Pin|r2r_7_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : PA0 */
GPIO_InitStruct.Pin = GPIO_PIN_0;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : r2r_0_Pin r2r_1_Pin r2r_3_Pin r2r_2_Pin
r2r_4_Pin r2r_5_Pin r2r_6_Pin r2r_7_Pin */
GPIO_InitStruct.Pin = r2r_0_Pin|r2r_1_Pin|r2r_3_Pin|r2r_2_Pin
|r2r_4_Pin|r2r_5_Pin|r2r_6_Pin|r2r_7_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @PAram file: pointer to the source file name
* @PAram line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
Solved! Go to Solution.
2024-07-09 05:26 AM
Hi everyone, I've managed to complete this task.
Here is the code:
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
TIM_HandleTypeDef htim2;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_TIM2_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
extern TIM_HandleTypeDef htim2;
void GPIO_SetValue(uint8_t value) {
uint16_t pins = 0;
pins |= (value & 0x01) ? r2r_0_Pin : 0;
pins |= (value & 0x02) ? r2r_1_Pin : 0;
pins |= (value & 0x04) ? r2r_2_Pin : 0;
pins |= (value & 0x08) ? r2r_3_Pin : 0;
pins |= (value & 0x10) ? r2r_4_Pin : 0;
pins |= (value & 0x20) ? r2r_5_Pin : 0;
pins |= (value & 0x40) ? r2r_6_Pin : 0;
pins |= (value & 0x80) ? r2r_7_Pin : 0;
GPIOB->ODR = pins;
}
// Function to set new frequency
void setSineWaveFrequency(uint32_t frequency) {
// Stop Timer 2
HAL_TIM_Base_Stop_IT(&htim2);
// Recalculate timer period based on new frequency
uint32_t timer_clock = HAL_RCC_GetPCLK1Freq();
uint32_t period = timer_clock / (frequency * SINE_TABLE_SIZE);
htim2.Init.Period = period-1;
HAL_TIM_Base_Init(&htim2);
// Restart Timer 2
HAL_TIM_Base_Start_IT(&htim2);
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_TIM2_Init();
/* USER CODE BEGIN 2 */
TIM2_Config();
sweep_duration_ms = 5000;
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
for( int i = START_FREQUENCY ; i<=STOP_FREQUENCY;i++){
setSineWaveFrequency(i);
i +=FREQ_STEP;
HAL_Delay(DELAY_MS);
}
HAL_GPIO_TogglePin(GPIOA,GPIO_PIN_0); // Sweep completed
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLLMUL_4;
RCC_OscInitStruct.PLL.PLLDIV = RCC_PLLDIV_2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief TIM2 Initialization Function
* @PAram None
* @retval None
*/
static void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 65536;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
}
void TIM2_Config(void) {
__HAL_RCC_TIM2_CLK_ENABLE();
htim2.Instance = TIM2;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 499; // Default period for 64 kHz
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK) {
// Initialization Error
Error_Handler();
}
// Enable the TIM2 global Interrupt
HAL_NVIC_SetPriority(TIM2_IRQn, 0, 1);
HAL_NVIC_EnableIRQ(TIM2_IRQn);
HAL_TIM_Base_Start_IT(&htim2);
}
/**
* @brief GPIO Initialization Function
* @PAram None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, r2r_0_Pin|r2r_1_Pin|r2r_3_Pin|r2r_2_Pin
|r2r_4_Pin|r2r_5_Pin|r2r_6_Pin|r2r_7_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : PA0 */
GPIO_InitStruct.Pin = GPIO_PIN_0;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : r2r_0_Pin r2r_1_Pin r2r_3_Pin r2r_2_Pin
r2r_4_Pin r2r_5_Pin r2r_6_Pin r2r_7_Pin */
GPIO_InitStruct.Pin = r2r_0_Pin|r2r_1_Pin|r2r_3_Pin|r2r_2_Pin
|r2r_4_Pin|r2r_5_Pin|r2r_6_Pin|r2r_7_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @PAram file: pointer to the source file name
* @PAram line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
2024-07-05 01:26 AM
HAL is not fast and GPIO write in HAL is even slower. Why don't you use the built-in DAC?
printf() in the timing critical output routine will also eat up much cycles..
2024-07-05 01:31 AM - edited 2024-07-05 01:33 AM
I have a R2R network and these bits generate sine waves. I don't know how to do this using built-in DAC, so if you can explain it, I'd be grateful. I have attached my circuit schematics. And printf() was just to debug the value.
Thanks in advance.
2024-07-05 02:00 AM
For use DAC read examples STM32CubeL0/Projects/NUCLEO-L073RZ at master · STMicroelectronics/STM32CubeL0 · GitHub
and your code need rewrite
void output_to_dac(uint16_t value){
HAL_GPIO_WritePin(GPIOB,r2r_0_Pin,(value & 0x01) ? GPIO_PIN_SET : GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOB,r2r_1_Pin,(value & 0x02) ? GPIO_PIN_SET : GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOB,r2r_2_Pin,(value & 0x04) ? GPIO_PIN_SET : GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOB,r2r_3_Pin,(value & 0x08) ? GPIO_PIN_SET : GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOB,r2r_4_Pin,(value & 0x10) ? GPIO_PIN_SET : GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOB,r2r_5_Pin,(value & 0x20) ? GPIO_PIN_SET : GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOB,r2r_6_Pin,(value & 0x40) ? GPIO_PIN_SET : GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOB,r2r_7_Pin,(value & 0x80) ? GPIO_PIN_SET : GPIO_PIN_RESET);
}
to somethink as
void output_to_dac(uint8_t value){
uint16_t temp = GPIOB->ODR & 0xff00;
GPIOB->ODR |= value;
}
2024-07-05 02:01 AM
Sorry, printf is not in the critical routine. For a start without the need to learn using the DAC, writing all 8 bits at a time will also speed up your code.
2024-07-05 02:18 AM
void output_to_dac(uint16_t value){
uint16_t pins_to_set = 0;
pins_to_set |= ((value & 0x01) ? r2r_0_Pin : 0);
pins_to_set |= ((value & 0x02) ? r2r_1_Pin : 0);
pins_to_set |= ((value & 0x04) ? r2r_2_Pin : 0);
pins_to_set |= ((value & 0x08) ? r2r_3_Pin : 0);
pins_to_set |= ((value & 0x10) ? r2r_4_Pin : 0);
pins_to_set |= ((value & 0x20) ? r2r_5_Pin : 0);
pins_to_set |= ((value & 0x40) ? r2r_6_Pin : 0);
pins_to_set |= ((value & 0x80) ? r2r_7_Pin : 0);
HAL_GPIO_WritePin(GPIOB, pins_to_set, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOB, ~(pins_to_set) & 0xFF, GPIO_PIN_RESET);
}
I changed my code so that the GPIO pins can be set and reset at the same time. The oscilloscope shows a constant output, not a sine wave.
2024-07-05 02:18 AM
void output_to_dac(uint16_t value){
uint16_t pins_to_set = 0;
pins_to_set |= ((value & 0x01) ? r2r_0_Pin : 0);
pins_to_set |= ((value & 0x02) ? r2r_1_Pin : 0);
pins_to_set |= ((value & 0x04) ? r2r_2_Pin : 0);
pins_to_set |= ((value & 0x08) ? r2r_3_Pin : 0);
pins_to_set |= ((value & 0x10) ? r2r_4_Pin : 0);
pins_to_set |= ((value & 0x20) ? r2r_5_Pin : 0);
pins_to_set |= ((value & 0x40) ? r2r_6_Pin : 0);
pins_to_set |= ((value & 0x80) ? r2r_7_Pin : 0);
HAL_GPIO_WritePin(GPIOB, pins_to_set, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOB, ~(pins_to_set) & 0xFF, GPIO_PIN_RESET);
}
I changed my code so that the GPIO pins can be set and reset at the same time. The oscilloscope shows a constant output, not a sine wave.
2024-07-05 03:15 AM - edited 2024-07-05 03:16 AM
You dont show schematics, but when not connected same weight bits order on port B change your design ... and learn how to use bare metal registers GPIOB->BRR BSRR ODR ...
2024-07-05 04:11 AM - edited 2024-07-05 04:17 AM
Here is the schematics
2024-07-09 05:26 AM
Hi everyone, I've managed to complete this task.
Here is the code:
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
TIM_HandleTypeDef htim2;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_TIM2_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
extern TIM_HandleTypeDef htim2;
void GPIO_SetValue(uint8_t value) {
uint16_t pins = 0;
pins |= (value & 0x01) ? r2r_0_Pin : 0;
pins |= (value & 0x02) ? r2r_1_Pin : 0;
pins |= (value & 0x04) ? r2r_2_Pin : 0;
pins |= (value & 0x08) ? r2r_3_Pin : 0;
pins |= (value & 0x10) ? r2r_4_Pin : 0;
pins |= (value & 0x20) ? r2r_5_Pin : 0;
pins |= (value & 0x40) ? r2r_6_Pin : 0;
pins |= (value & 0x80) ? r2r_7_Pin : 0;
GPIOB->ODR = pins;
}
// Function to set new frequency
void setSineWaveFrequency(uint32_t frequency) {
// Stop Timer 2
HAL_TIM_Base_Stop_IT(&htim2);
// Recalculate timer period based on new frequency
uint32_t timer_clock = HAL_RCC_GetPCLK1Freq();
uint32_t period = timer_clock / (frequency * SINE_TABLE_SIZE);
htim2.Init.Period = period-1;
HAL_TIM_Base_Init(&htim2);
// Restart Timer 2
HAL_TIM_Base_Start_IT(&htim2);
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_TIM2_Init();
/* USER CODE BEGIN 2 */
TIM2_Config();
sweep_duration_ms = 5000;
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
for( int i = START_FREQUENCY ; i<=STOP_FREQUENCY;i++){
setSineWaveFrequency(i);
i +=FREQ_STEP;
HAL_Delay(DELAY_MS);
}
HAL_GPIO_TogglePin(GPIOA,GPIO_PIN_0); // Sweep completed
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLLMUL_4;
RCC_OscInitStruct.PLL.PLLDIV = RCC_PLLDIV_2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief TIM2 Initialization Function
* @PAram None
* @retval None
*/
static void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 65536;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
}
void TIM2_Config(void) {
__HAL_RCC_TIM2_CLK_ENABLE();
htim2.Instance = TIM2;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 499; // Default period for 64 kHz
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK) {
// Initialization Error
Error_Handler();
}
// Enable the TIM2 global Interrupt
HAL_NVIC_SetPriority(TIM2_IRQn, 0, 1);
HAL_NVIC_EnableIRQ(TIM2_IRQn);
HAL_TIM_Base_Start_IT(&htim2);
}
/**
* @brief GPIO Initialization Function
* @PAram None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, r2r_0_Pin|r2r_1_Pin|r2r_3_Pin|r2r_2_Pin
|r2r_4_Pin|r2r_5_Pin|r2r_6_Pin|r2r_7_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : PA0 */
GPIO_InitStruct.Pin = GPIO_PIN_0;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : r2r_0_Pin r2r_1_Pin r2r_3_Pin r2r_2_Pin
r2r_4_Pin r2r_5_Pin r2r_6_Pin r2r_7_Pin */
GPIO_InitStruct.Pin = r2r_0_Pin|r2r_1_Pin|r2r_3_Pin|r2r_2_Pin
|r2r_4_Pin|r2r_5_Pin|r2r_6_Pin|r2r_7_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @PAram file: pointer to the source file name
* @PAram line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */