cancel
Showing results for 
Search instead for 
Did you mean: 

Help with Using Interrupts on the VL53L0X Sensor with the NUCLEO-64 F411 Board

Hello,
I am using a VL53L0X sensor with a NUCLEO-64 F411 board, and I am trying to achieve accurate measurements and low power consumption for the development of a LiDAR system.
I have one problem and one question:

  • Problem:
    The measurements are a bit inaccurate. For example, when I measure an object at a real distance of 5 cm, the sensor detects it at around 7 cm. Also, for some objects beyond 20–25 cm, the readings become irregular.

  • Question:
    I would like to use the sensor with interrupts, but the User Manual for the API is not very clear on how to implement the interrupt feature.
    I am attaching my main.c file and the library I am using, which includes the API and its .h file.

Thank you very much for your help!

//This is the main.c
/* USER CODE BEGIN Header */
/**
 ******************************************************************************
 * @file           : main.c
 * @brief          : Main program body
 ******************************************************************************
 * @attention
 *
 * Copyright (c) 2025 STMicroelectronics.
 * All rights reserved.
 *
 * This software is licensed under terms that can be found in the LICENSE file
 * in the root directory of this software component.
 * If no LICENSE file comes with this software, it is provided AS-IS.
 *
 ******************************************************************************
 */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "uart.h"
#include "lidarvl53.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
uint16_t milimetros;
float distancia;
char texto[100];
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c1;

UART_HandleTypeDef huart2;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_I2C1_Init(void);
static void MX_USART2_UART_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
 * @brief  The application entry point.
 * @retval int
 */
int main(void) {

	/* USER CODE BEGIN 1 */

	/* USER CODE END 1 */

	/* MCU Configuration--------------------------------------------------------*/

	/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
	HAL_Init();

	/* USER CODE BEGIN Init */

	/* USER CODE END Init */

	/* Configure the system clock */
	SystemClock_Config();

	/* USER CODE BEGIN SysInit */

	/* USER CODE END SysInit */

	/* Initialize all configured peripherals */
	MX_GPIO_Init();
	MX_I2C1_Init();
	MX_USART2_UART_Init();
	/* USER CODE BEGIN 2 */
	lidar_init(dir_s1);

	/* USER CODE END 2 */

	/* Infinite loop */
	/* USER CODE BEGIN WHILE */
	while (1) {
		distancia = lidar_lee_mm(dir_s1);

		if (distancia < 0) {
			uartx_write_text(&huart2, "SENSOR NO CONECTADO\n");
		} else {
			sprintf(texto, "\r%f cm\n", distancia); // 2 decimales
			uartx_write_text(&huart2, texto);
		}

		/* USER CODE END WHILE */

		/* USER CODE BEGIN 3 */
	}
	/* USER CODE END 3 */
}

/**
 * @brief System Clock Configuration
 * @retval None
 */
void SystemClock_Config(void) {
	RCC_OscInitTypeDef RCC_OscInitStruct = { 0 };
	RCC_ClkInitTypeDef RCC_ClkInitStruct = { 0 };

	/** Configure the main internal regulator output voltage
	 */
	__HAL_RCC_PWR_CLK_ENABLE();
	__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

	/** Initializes the RCC Oscillators according to the specified parameters
	 * in the RCC_OscInitTypeDef structure.
	 */
	RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
	RCC_OscInitStruct.HSIState = RCC_HSI_ON;
	RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
	RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
	if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
		Error_Handler();
	}

	/** Initializes the CPU, AHB and APB buses clocks
	 */
	RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
			| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
	RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
	RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
	RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
	RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

	if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) {
		Error_Handler();
	}
}

/**
 * @brief I2C1 Initialization Function
 *  None
 * @retval None
 */
static void MX_I2C1_Init(void) {

	/* USER CODE BEGIN I2C1_Init 0 */

	/* USER CODE END I2C1_Init 0 */

	/* USER CODE BEGIN I2C1_Init 1 */

	/* USER CODE END I2C1_Init 1 */
	hi2c1.Instance = I2C1;
	hi2c1.Init.ClockSpeed = 400000;
	hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
	hi2c1.Init.OwnAddress1 = 0;
	hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
	hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
	hi2c1.Init.OwnAddress2 = 0;
	hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
	hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
	if (HAL_I2C_Init(&hi2c1) != HAL_OK) {
		Error_Handler();
	}
	/* USER CODE BEGIN I2C1_Init 2 */

	/* USER CODE END I2C1_Init 2 */

}

/**
 * @brief USART2 Initialization Function
 *  None
 * @retval None
 */
static void MX_USART2_UART_Init(void) {

	/* USER CODE BEGIN USART2_Init 0 */

	/* USER CODE END USART2_Init 0 */

	/* USER CODE BEGIN USART2_Init 1 */

	/* USER CODE END USART2_Init 1 */
	huart2.Instance = USART2;
	huart2.Init.BaudRate = 115200;
	huart2.Init.WordLength = UART_WORDLENGTH_8B;
	huart2.Init.StopBits = UART_STOPBITS_1;
	huart2.Init.Parity = UART_PARITY_NONE;
	huart2.Init.Mode = UART_MODE_TX_RX;
	huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
	huart2.Init.OverSampling = UART_OVERSAMPLING_16;
	if (HAL_UART_Init(&huart2) != HAL_OK) {
		Error_Handler();
	}
	/* USER CODE BEGIN USART2_Init 2 */

	/* USER CODE END USART2_Init 2 */

}

/**
 * @brief GPIO Initialization Function
 *  None
 * @retval None
 */
static void MX_GPIO_Init(void) {
	GPIO_InitTypeDef GPIO_InitStruct = { 0 };
	/* USER CODE BEGIN MX_GPIO_Init_1 */
	/* USER CODE END MX_GPIO_Init_1 */

	/* GPIO Ports Clock Enable */
	__HAL_RCC_GPIOA_CLK_ENABLE();
	__HAL_RCC_GPIOB_CLK_ENABLE();

	/*Configure GPIO pin : PA5 */
	GPIO_InitStruct.Pin = GPIO_PIN_5;
	GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
	GPIO_InitStruct.Pull = GPIO_NOPULL;
	HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

	/* EXTI interrupt init*/
	HAL_NVIC_SetPriority(EXTI9_5_IRQn, 0, 0);
	HAL_NVIC_EnableIRQ(EXTI9_5_IRQn);

	/* USER CODE BEGIN MX_GPIO_Init_2 */
	/* USER CODE END MX_GPIO_Init_2 */
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
 * @brief  This function is executed in case of error occurrence.
 * @retval None
 */
void Error_Handler(void) {
	/* USER CODE BEGIN Error_Handler_Debug */
	/* User can add his own implementation to report the HAL error return state */
	__disable_irq();
	while (1) {
	}
	/* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  *   file: pointer to the source file name
  *   line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

//Archive .h 
/*
 * lidarvl53.h
 *
 *  Created on: Jul 20, 2023
 *      Author: alcid
 */

#define lidar_max_mm 2000

#ifndef LIBERRIAS_VL53L0X_LIDARVL53_H_
#define LIBERRIAS_VL53L0X_LIDARVL53_H_

#define dir_s1 0x52  //direccion del 1° sensor
#define dir_s2 0x53  //direccion del 2° sensor
#define dir_s3 0x54  //direccion del 3° sensor
#define dir_s4 0x55  //direccion del 4° sensor
#define dir_s5 0x56  //direccion del 5° sensor
#define dir_s6 0x57  //direccion del 6° sensor
#define dir_s7 0x58  //direccion del 7° sensor
#define dir_s8 0x59  //direccion del 8° sensor



#include "vl53l0x_api.h"
#include "main.h"


void lidar_init(uint8_t dir);
float lidar_lee_mm(uint8_t dir);
float lidar_lee_cm(uint8_t dir);
uint8_t lidar_set_dir(uint8_t dir);

#endif /* LIBERRIAS_VL53L0X_LIDARVL53_H_ */
//Library
#include "lidarvl53.h"

#define HIGH_ACCURACY_MODE 200000


VL53L0X_RangingMeasurementData_t RangingData;
VL53L0X_Dev_t  vl53l0x_c; // center module
VL53L0X_DEV    Dev = &vl53l0x_c;
uint32_t refSpadCount;
  uint8_t isApertureSpads;
  uint8_t VhvSettings;
  uint8_t PhaseCal;

extern I2C_HandleTypeDef hi2c1;


void lidar_init(uint8_t dir)
{
	  VL53L0X_Error Status = VL53L0X_ERROR_NONE;
	  Dev->I2cHandle = &hi2c1;//el puerto i2c a usar
	  Dev->I2cDevAddr = dir;
      Dev->comms_type=1;
      Dev->comms_speed_khz=400;//  i2c a 400khz

      VL53L0X_WaitDeviceBooted( Dev );
	  VL53L0X_DataInit( Dev );
	  VL53L0X_StaticInit( Dev );
	  VL53L0X_PerformRefSpadManagement(Dev, &refSpadCount, &isApertureSpads);
	  VL53L0X_PerformRefCalibration(Dev, &VhvSettings, &PhaseCal);

	  VL53L0X_SetDeviceMode(Dev, VL53L0X_DEVICEMODE_CONTINUOUS_RANGING);

	  // Enable/Disable Sigma and Signal check
	  if (Status == VL53L0X_ERROR_NONE) {
		  Status = VL53L0X_SetLimitCheckValue(Dev, VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE,(FixPoint1616_t)(0.25*65536));
	  }
	  if (Status == VL53L0X_ERROR_NONE) {
		  Status = VL53L0X_SetLimitCheckValue(Dev,VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE,(FixPoint1616_t)(18*65536));
	  }
	  if (Status == VL53L0X_ERROR_NONE) {
		  Status = VL53L0X_SetMeasurementTimingBudgetMicroSeconds(Dev ,200000);
	  }
	  if(Status == VL53L0X_ERROR_NONE){
		  Status = VL53L0X_SetGpioConfig(Dev, 0, VL53L0X_DEVICEMODE_CONTINUOUS_RANGING, VL53L0X_GPIOFUNCTIONALITY_NEW_MEASURE_READY, VL53L0X_INTERRUPTPOLARITY_LOW);
	  }
	  if (Status == VL53L0X_ERROR_NONE) {
	      Status = VL53L0X_StartMeasurement(Dev);
	  }

}

float lidar_lee_mm(uint8_t dir)
{
    float lidarmil;
    float offset = 24.848;
    Dev->I2cDevAddr = dir;
    VL53L0X_GetRangingMeasurementData(Dev, &RangingData);
    lidarmil = (float)RangingData.RangeMilliMeter - offset;
    if (lidarmil > lidar_max_mm) lidarmil = lidar_max_mm;
    return lidarmil;
}



float lidar_lee_cm(uint8_t dir)
{
	return((float)lidar_lee_mm(dir)/10.0);
}

uint8_t lidar_set_dir(uint8_t dir)
{
	uint8_t status = VL53L0X_SetDeviceAddress(Dev, dir << 1);
	return(status);

}
0 REPLIES 0