2025-03-28 3:15 AM
Hello,
I'm trying to use the LTDC peripheral with DMA2D to be able to send a image to the display without using the CPU
So first i used the example LTDC_Horizontal_Mirroring to have a working LCD . Compiling it i have the dolphin on my screen and flip horizontally.
Next step i used the same config as the project DMA2D_MemoryTo_Memory. So DMA2D in M2M, ARGB4444 in input /ouput alpha input at 0xFF and enable the interrupt (done in my LTDC_Horizontal_Mirroring project)(Also enable I and D cache for cortex M55).
After i used the same code for the dma in the M2M project , but when i use the debug tool or put the ouput buffer in my screen i have only 0.
I checked all register for DMA and the config and adress for in and out (DMA) correspond to the address of the buffer i gave to DMA.
Any ideas ?
Thanks.
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "dolphin_156x129_565.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define LAYER_SIZE_X 16
#define LAYER_SIZE_Y 32
#define LAYER_NB_BYTES_PER_PIXEL 2 /* because ARGB4444 format in input texture */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
DMA2D_HandleTypeDef hdma2d;
LTDC_HandleTypeDef hltdc;
/* USER CODE BEGIN PV */
__ALIGN_BEGIN uint32_t aBufferResult[(LAYER_SIZE_X * LAYER_SIZE_Y * LAYER_NB_BYTES_PER_PIXEL) / 4] __attribute__((aligned(16))) __NON_CACHEABLE = {0};
/* ARGB4444 input buffer 16bpp */
__ALIGN_BEGIN uint32_t aBufferInput[(LAYER_SIZE_X * LAYER_SIZE_Y * LAYER_NB_BYTES_PER_PIXEL) / 4] __attribute__((aligned(16))) =
{0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203,
0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203,
0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203,
0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203,
0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203,
0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203,
0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203,
0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203,
0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203,
0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203,
0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203,
0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203,
0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203,
0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203,
0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203,
0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203,
0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203,
0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203,
0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203,
0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203,
0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203,
0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203,
0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203,
0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203,
0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203,
0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203,
0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203,
0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203,
0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203,
0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203,
0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203,
0xEFFFFFF2, 0xAB1FFFF0, 0x0504044E, 0x89ADCDEF, 0x15248722, 0x5201245E, 0x01025FDE, 0xFE010203} ;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_LTDC_Init(void);
static void MX_DMA2D_Init(void);
/* USER CODE BEGIN PFP */
void MPU_Config(void);
static void TransferError(DMA2D_HandleTypeDef* dma2dHandle);
static void TransferComplete(DMA2D_HandleTypeDef* dma2dHandle);
ErrorStatus Buffercmp(uint32_t* pBuffer1, uint32_t* pBuffer2, uint32_t BufferLength);
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
MPU_Config();
/* USER CODE END 1 */
/* Enable the CPU Cache */
/* Enable I-Cache---------------------------------------------------------*/
SCB_EnableICache();
/* Enable D-Cache---------------------------------------------------------*/
SCB_EnableDCache();
/* MCU Configuration--------------------------------------------------------*/
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_LTDC_Init();
MX_DMA2D_Init();
/* USER CODE BEGIN 2 */
BSP_LED_Init(LED1);
BSP_LED_Init(LED2);
/* DMA2D Callbacks Configuration*/
hdma2d.XferCpltCallback = TransferComplete;
hdma2d.XferErrorCallback = TransferError;
/* Start DMA2D transfer*/
if(HAL_DMA2D_Start_IT(&hdma2d,
(uint32_t)&aBufferInput, /* Source memory buffer */
(uint32_t)&aBufferResult, /* Destination memory buffer */
LAYER_SIZE_X, /* Width of the 2D memory transfer in pixels */
LAYER_SIZE_Y) /* Height of the 2D memory transfer in lines */
!= HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/* Wait for the end of the transfer*/
/* Before starting a new transfer, you need to check the current state of
the peripheral; if it is busy you need to wait for the end of current
transfer before starting a new one.
For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_DMA2D_GetState(&hdma2d) != HAL_DMA2D_STATE_READY)
{
HAL_Delay(100);
BSP_LED_Off(LED1);
/* Check transfer correctness*/
if(Buffercmp(aBufferInput,
aBufferResult,
((LAYER_SIZE_X * LAYER_SIZE_Y * LAYER_NB_BYTES_PER_PIXEL) / 4)) == ERROR)
{
/* KO */
/* Turn LD3 On */
BSP_LED_On(LED2);
}
else
{
/* OK */
/* Turn on LD1 */
BSP_LED_On(LED1);
}
}
HAL_LTDC_SetAddress(&hltdc, (uint32_t) dolphin_156x129_565, 0);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
HAL_Delay(1000);
HAL_LTDC_ConfigMirror(&hltdc,LTDC_MIRROR_HORIZONTAL, 0);
HAL_Delay(1000);
HAL_LTDC_ConfigMirror(&hltdc,LTDC_MIRROR_NONE, 0);
}
/* USER CODE END 3 */
}
/* USER CODE BEGIN CLK 1 */
/* The system Clock is configured as follows :
CPU Clock source = IC1_CK
System bus Clock source = IC2_IC6_IC11_CK
CPUCLK (sysa_ck) (Hz) = 600000000
SYSCLK AXI (sysb_ck) (Hz) = 400000000
SYSCLK NPU (sysc_ck) (Hz) = 300000000
SYSCLK AXISRAM3/4/5/6 (sysd_ck) (Hz) = 400000000
HCLKx(Hz) = 200000000
PCLKx(Hz) = 200000000
AHB Prescaler = 2
APB1 Prescaler = 1
APB2 Prescaler = 1
APB4 Prescaler = 1
APB5 Prescaler = 1
PLL1 State = ON
PLL1 clock source = HSI
PLL1 M = 4
PLL1 N = 75
PLL1 P1 = 1
PLL1 P2 = 1
PLL1 FRACN = 0
PLL2 State = BYPASS
PLL2 clock source = HSI
PLL3 State = BYPASS
PLL3 clock source = HSI
PLL4 State = BYPASS
PLL4 clock source = HSI
*/
/* USER CODE END CLK 1 */
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the System Power Supply
*/
if (HAL_PWREx_ConfigSupply(PWR_EXTERNAL_SOURCE_SUPPLY) != HAL_OK)
{
Error_Handler();
}
/* Enable HSI */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSIDiv = RCC_HSI_DIV1;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL1.PLLState = RCC_PLL_NONE;
RCC_OscInitStruct.PLL2.PLLState = RCC_PLL_NONE;
RCC_OscInitStruct.PLL3.PLLState = RCC_PLL_NONE;
RCC_OscInitStruct.PLL4.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Get current CPU/System buses clocks configuration and if necessary switch
to intermediate HSI clock to ensure target clock can be set
*/
HAL_RCC_GetClockConfig(&RCC_ClkInitStruct);
if ((RCC_ClkInitStruct.CPUCLKSource == RCC_CPUCLKSOURCE_IC1) ||
(RCC_ClkInitStruct.SYSCLKSource == RCC_SYSCLKSOURCE_IC2_IC6_IC11))
{
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_CPUCLK | RCC_CLOCKTYPE_SYSCLK);
RCC_ClkInitStruct.CPUCLKSource = RCC_CPUCLKSOURCE_HSI;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
}
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_NONE;
RCC_OscInitStruct.PLL1.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL1.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL1.PLLM = 4;
RCC_OscInitStruct.PLL1.PLLN = 75;
RCC_OscInitStruct.PLL1.PLLFractional = 0;
RCC_OscInitStruct.PLL1.PLLP1 = 1;
RCC_OscInitStruct.PLL1.PLLP2 = 1;
RCC_OscInitStruct.PLL2.PLLState = RCC_PLL_NONE;
RCC_OscInitStruct.PLL3.PLLState = RCC_PLL_NONE;
RCC_OscInitStruct.PLL4.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL4.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL4.PLLM = 1;
RCC_OscInitStruct.PLL4.PLLN = 25;
RCC_OscInitStruct.PLL4.PLLFractional = 0;
RCC_OscInitStruct.PLL4.PLLP1 = 1;
RCC_OscInitStruct.PLL4.PLLP2 = 1;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_CPUCLK|RCC_CLOCKTYPE_HCLK
|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1
|RCC_CLOCKTYPE_PCLK2|RCC_CLOCKTYPE_PCLK5
|RCC_CLOCKTYPE_PCLK4;
RCC_ClkInitStruct.CPUCLKSource = RCC_CPUCLKSOURCE_IC1;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_IC2_IC6_IC11;
RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV1;
RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV1;
RCC_ClkInitStruct.APB5CLKDivider = RCC_APB5_DIV1;
RCC_ClkInitStruct.IC1Selection.ClockSelection = RCC_ICCLKSOURCE_PLL1;
RCC_ClkInitStruct.IC1Selection.ClockDivider = 2;
RCC_ClkInitStruct.IC2Selection.ClockSelection = RCC_ICCLKSOURCE_PLL1;
RCC_ClkInitStruct.IC2Selection.ClockDivider = 3;
RCC_ClkInitStruct.IC6Selection.ClockSelection = RCC_ICCLKSOURCE_PLL1;
RCC_ClkInitStruct.IC6Selection.ClockDivider = 4;
RCC_ClkInitStruct.IC11Selection.ClockSelection = RCC_ICCLKSOURCE_PLL1;
RCC_ClkInitStruct.IC11Selection.ClockDivider = 3;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief DMA2D Initialization Function
* @PAram None
* @retval None
*/
static void MX_DMA2D_Init(void)
{
/* USER CODE BEGIN DMA2D_Init 0 */
/* USER CODE END DMA2D_Init 0 */
/* USER CODE BEGIN DMA2D_Init 1 */
/* USER CODE END DMA2D_Init 1 */
hdma2d.Instance = DMA2D;
hdma2d.Init.Mode = DMA2D_M2M;
hdma2d.Init.ColorMode = DMA2D_OUTPUT_ARGB4444;
hdma2d.Init.OutputOffset = 0;
hdma2d.LayerCfg[1].InputOffset = 0;
hdma2d.LayerCfg[1].InputColorMode = DMA2D_INPUT_ARGB4444;
hdma2d.LayerCfg[1].AlphaMode = DMA2D_NO_MODIF_ALPHA;
hdma2d.LayerCfg[1].InputAlpha = 255;
if (HAL_DMA2D_Init(&hdma2d) != HAL_OK)
{
Error_Handler();
}
if (HAL_DMA2D_ConfigLayer(&hdma2d, 1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN DMA2D_Init 2 */
/* USER CODE END DMA2D_Init 2 */
}
/**
* @brief LTDC Initialization Function
* @PAram None
* @retval None
*/
static void MX_LTDC_Init(void)
{
/* USER CODE BEGIN LTDC_Init 0 */
/* USER CODE END LTDC_Init 0 */
LTDC_LayerCfgTypeDef pLayerCfg = {0};
/* USER CODE BEGIN LTDC_Init 1 */
/* USER CODE END LTDC_Init 1 */
hltdc.Instance = LTDC;
hltdc.Init.HSPolarity = LTDC_HSPOLARITY_AL;
hltdc.Init.VSPolarity = LTDC_VSPOLARITY_AL;
hltdc.Init.DEPolarity = LTDC_DEPOLARITY_AL;
hltdc.Init.PCPolarity = LTDC_PCPOLARITY_IPC;
hltdc.Init.HorizontalSync = 4;
hltdc.Init.VerticalSync = 4;
hltdc.Init.AccumulatedHBP = 12;
hltdc.Init.AccumulatedVBP = 12;
hltdc.Init.AccumulatedActiveW = 812;
hltdc.Init.AccumulatedActiveH = 492;
hltdc.Init.TotalWidth = 820;
hltdc.Init.TotalHeigh = 500;
hltdc.Init.Backcolor.Blue = 0;
hltdc.Init.Backcolor.Green = 0;
hltdc.Init.Backcolor.Red = 0;
if (HAL_LTDC_Init(&hltdc) != HAL_OK)
{
Error_Handler();
}
pLayerCfg.WindowX0 = 0;
pLayerCfg.WindowX1 = 156;
pLayerCfg.WindowY0 = 0;
pLayerCfg.WindowY1 = 129;
pLayerCfg.PixelFormat = LTDC_PIXEL_FORMAT_RGB565;
pLayerCfg.Alpha = 255;
pLayerCfg.Alpha0 = 0;
pLayerCfg.BlendingFactor1 = LTDC_BLENDING_FACTOR1_CA;
pLayerCfg.BlendingFactor2 = LTDC_BLENDING_FACTOR2_CA;
pLayerCfg.FBStartAdress = 0;
pLayerCfg.ImageWidth = 156;
pLayerCfg.ImageHeight = 129;
pLayerCfg.Backcolor.Blue = 255;
pLayerCfg.Backcolor.Green = 0;
pLayerCfg.Backcolor.Red = 0;
if (HAL_LTDC_ConfigLayer(&hltdc, &pLayerCfg, 0) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN LTDC_Init 2 */
RIMC_MasterConfig_t RIMC_master = {0};
RIMC_master.MasterCID = RIF_CID_1;
RIMC_master.SecPriv = RIF_ATTRIBUTE_SEC | RIF_ATTRIBUTE_PRIV;
HAL_RIF_RIMC_ConfigMasterAttributes(RIF_MASTER_INDEX_LTDC1 , &RIMC_master);
HAL_RIF_RISC_SetSlaveSecureAttributes(RIF_RISC_PERIPH_INDEX_LTDCL1 , RIF_ATTRIBUTE_SEC | RIF_ATTRIBUTE_PRIV);
/* USER CODE END LTDC_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @PAram None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOQ_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOG_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOQ, LCD_BL_CTRL_Pin|LCD_ONOFF_Pin, GPIO_PIN_SET);
/*Configure GPIO pins : LCD_BL_CTRL_Pin LCD_ONOFF_Pin */
GPIO_InitStruct.Pin = LCD_BL_CTRL_Pin|LCD_ONOFF_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOQ, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
void MPU_Config(void)
{
MPU_Region_InitTypeDef default_config = {0};
MPU_Attributes_InitTypeDef attr_config = {0};
uint32_t primask_bit = __get_PRIMASK();
/* disable the MPU */
HAL_MPU_Disable();
/* create an attribute configuration for the MPU */
attr_config.Attributes = INNER_OUTER(MPU_NOT_CACHEABLE);
attr_config.Number = MPU_ATTRIBUTES_NUMBER0;
HAL_MPU_ConfigMemoryAttributes(&attr_config);
/* Create a non cacheable region */
/*Normal memory type, code execution allowed */
default_config.Enable = MPU_REGION_ENABLE;
default_config.Number = MPU_REGION_NUMBER0;
default_config.BaseAddress = __NON_CACHEABLE_SECTION_BEGIN;
default_config.LimitAddress =__NON_CACHEABLE_SECTION_END;
default_config.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE;
default_config.AccessPermission = MPU_REGION_ALL_RW;
default_config.IsShareable = MPU_ACCESS_NOT_SHAREABLE;
default_config.AttributesIndex = MPU_ATTRIBUTES_NUMBER0;
HAL_MPU_ConfigRegion(&default_config);
/* enable the MPU */
HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT);
/* Exit critical section to lock the system and avoid any issue around MPU mechanisme */
__set_PRIMASK(primask_bit);
}
/**
* @brief DMA2D Transfer completed callback
* @PAram hdma2d: DMA2D handle.
* @note This example shows a simple way to report end of DMA2D transfer, and
* you can add your own implementation.
* @retval None
*/
static void TransferComplete(DMA2D_HandleTypeDef *hdma2d)
{
BSP_LED_On(LED1);
}
/**
* @brief DMA2D error callbacks
* @PAram hdma2d: DMA2D handle
* @note This example shows a simple way to report DMA2D transfer error, and you can
* add your own implementation.
* @retval None
*/
static void TransferError(DMA2D_HandleTypeDef *hdma2d)
{
/* Turn LED red on On */
BSP_LED_On(LED2);
}
/**
* @brief Compares two buffers.
* @PAram pBuffer1, pBuffer2: buffers to be compared.
* @PAram BufferLength: buffer's length.
* @retval 0: pBuffer1 identical to pBuffer2
* 1: pBuffer1 differs from pBuffer2
*/
ErrorStatus Buffercmp(uint32_t* pBuffer1, uint32_t* pBuffer2, uint32_t BufferLength)
{
while (BufferLength--)
{
if (*pBuffer1 != *pBuffer2)
{
return ERROR;
}
pBuffer1++;
pBuffer2++;
}
return SUCCESS;
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* Turn On the Red Led */
BSP_LED_On(LED2);
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @PAram file: pointer to the source file name
* @PAram line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
2025-03-28 11:18 AM
For info here all registers