cancel
Showing results for 
Search instead for 
Did you mean: 

Mutli channel ADC with DMA. HAL_ADC_ConvCptlCallback doesn't get hit.

NHopk.2
Associate

I'm using a STM32F411CE ("black pill") with STM32 Cube IDE and have been following this tutorial, except I'm using a different board and 5 ADC channels instead of 1. I have set them up as in the attached .ioc file. I would like to use a ping-pong buffer as in the tutorial, but can't get my breakpoint in HAL_ADC_ConvCptlCallback or HAL_ADC_ConvHalfCptlCallback to be hit. Any code I put in those functions doesn't get run either. Why not?

This code prints 0's to the serial port, but if I use `adc_buf` instead of `adc_teset` on lines 49 and 56, I get good values. I intend to use a larger buffer to save many readings of the 5 ADC channels into, average the readings and save and print the result. I want to do the averaging and saving inside HAL_ADC_ConvCptlCallback and HAL_ADC_ConvHalfCptlCallback.

Here is my main.c file, with the unrelevant cube-generated code stripped out:

/* USER CODE BEGIN PD */
#define NUM_ADC_CHANNELS 3
#define ADC_BUF_LEN 5
/* USER CODE END PD */
 
/* USER CODE BEGIN PV */
//volatile uint16_t pot, temp1, temp2, temp3, drive_current;
uint16_t adc_buf[ADC_BUF_LEN];
uint16_t adc_test[ADC_BUF_LEN];
/* USER CODE END PV */
 
int main(void)
{
  /* USER CODE BEGIN 1 */
	char uart_buf[100];
	uint8_t uart_buf_len;
  /* USER CODE END 1 */
 
  /* MCU Configuration--------------------------------------------------------*/
 
  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();
 
  /* USER CODE BEGIN Init */
 
  /* USER CODE END Init */
 
  /* Configure the system clock */
  SystemClock_Config();
 
  /* USER CODE BEGIN SysInit */
 
  /* USER CODE END SysInit */
 
  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_USB_DEVICE_Init();
  MX_TIM10_Init();
  MX_ADC1_Init();
  /* USER CODE BEGIN 2 */
	HAL_TIM_PWM_Start(&htim10, TIM_CHANNEL_1);
	HAL_ADC_Start_DMA(&hadc1, (uint32_t*) adc_buf, ADC_BUF_LEN);
  /* USER CODE END 2 */
 
  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
	while (1) {
		uint16_t scaled_pwm_pulse = (adc_test[0] * 469) / 4095; // Was: pot * 479 / 4095
 
		// Update PWM duty cycle
		__HAL_TIM_SET_COMPARE(&htim10, TIM_CHANNEL_1, scaled_pwm_pulse);
 
		// Print elapsed time
		uart_buf_len = sprintf(uart_buf, "%hu, %hu, %hu, %hu, %hu\r\n",
								scaled_pwm_pulse, adc_test[1], adc_test[2], adc_test[3], adc_test[4]);
		CDC_Transmit_FS((uint8_t*) uart_buf, uart_buf_len); // We add this line for serial comm
 
		HAL_Delay(20);  // 20 ms
    /* USER CODE END WHILE */
 
    /* USER CODE BEGIN 3 */
	}
  /* USER CODE END 3 */
}
 
/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
 
  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 25;
  RCC_OscInitStruct.PLL.PLLN = 384;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
  RCC_OscInitStruct.PLL.PLLQ = 8;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
 
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3) != HAL_OK)
  {
    Error_Handler();
  }
}
 
/**
  * @brief ADC1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_ADC1_Init(void)
{
 
  /* USER CODE BEGIN ADC1_Init 0 */
 
  /* USER CODE END ADC1_Init 0 */
 
  ADC_ChannelConfTypeDef sConfig = {0};
 
  /* USER CODE BEGIN ADC1_Init 1 */
 
  /* USER CODE END ADC1_Init 1 */
  /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
  */
  hadc1.Instance = ADC1;
  hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
  hadc1.Init.Resolution = ADC_RESOLUTION_12B;
  hadc1.Init.ScanConvMode = ENABLE;
  hadc1.Init.ContinuousConvMode = ENABLE;
  hadc1.Init.DiscontinuousConvMode = DISABLE;
  hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc1.Init.NbrOfConversion = 5;
  hadc1.Init.DMAContinuousRequests = ENABLE;
  hadc1.Init.EOCSelection = ADC_EOC_SEQ_CONV;
  if (HAL_ADC_Init(&hadc1) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  */
  sConfig.Channel = ADC_CHANNEL_0;
  sConfig.Rank = 1;
  sConfig.SamplingTime = ADC_SAMPLETIME_480CYCLES;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  */
  sConfig.Channel = ADC_CHANNEL_1;
  sConfig.Rank = 2;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  */
  sConfig.Channel = ADC_CHANNEL_2;
  sConfig.Rank = 3;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  */
  sConfig.Channel = ADC_CHANNEL_3;
  sConfig.Rank = 4;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  */
  sConfig.Channel = ADC_CHANNEL_4;
  sConfig.Rank = 5;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN ADC1_Init 2 */
 
  /* USER CODE END ADC1_Init 2 */
 
}
 
/**
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void)
{
 
  /* DMA controller clock enable */
  __HAL_RCC_DMA2_CLK_ENABLE();
 
  /* DMA interrupt init */
  /* DMA2_Stream0_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn);
 
}
 
/* USER CODE BEGIN 4 */
 
void HAL_ADC_ConvHalfCptlCallback(ADC_HandleTypeDef *hadc1) {
	HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13, GPIO_PIN_SET);
}
 
void HAL_ADC_ConvCptlCallback(ADC_HandleTypeDef *hadc1) {
	HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13, GPIO_PIN_RESET);
 
	for (uint8_t i = 0; i < ADC_BUF_LEN; ++i) {
		adc_test[i] = adc_buf[i];
	}
}

0 REPLIES 0