cancel
Showing results for 
Search instead for 
Did you mean: 

Need Help to generate changing frequency sine wave in STM32L073RZT

rutvik1110
Associate II

Hello Community,

I'm working on a project and could use your help. I'm trying to make a sine wave with a changing frequency from 600 Hz to 5 kHz using STM32 microcontroller(STM32L073RZT) with 32 MHz as sysclk.Capture.PNG

 

Capture1.PNG

Capture2.PNG

This are my configurations. Where this r2r pins are DAC bits. 

 

I am not able to generate sine wave more than 280 Hz but i want to generate till 2 KHz. 

Please suggest if I'm doing something wrong or if anyone has a good idea on how to overcome this issue.

 

Code: 

/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2024 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include <stdio.h> #include "stm32l0xx.h" #include <math.h> /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ #define SINE_TABLE_SIZE 256 void output_to_dac(uint16_t value); volatile uint32_t Index = 0; volatile uint32_t stepSize = 1; /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ TIM_HandleTypeDef htim2; UART_HandleTypeDef huart2; /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_TIM2_Init(void); static void MX_USART2_UART_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ const uint16_t sineLookupTable[] = { 128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 162, 165, 167, 170, 173, 176, 179, 182, 185, 188, 190, 193, 196, 198, 201, 203, 206, 208, 211, 213, 215, 218, 220, 222, 224, 226, 228, 230, 232, 234, 235, 237, 238, 240, 241, 243, 244, 245, 246, 248, 249, 250, 250, 251, 252, 253, 253, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 254, 254, 254, 253, 253, 252, 251, 250, 250, 249, 248, 246, 245, 244, 243, 241, 240, 238, 237, 235, 234, 232, 230, 228, 226, 224, 222, 220, 218, 215, 213, 211, 208, 206, 203, 201, 198, 196, 193, 190, 188, 185, 182, 179, 176, 173, 170, 167, 165, 162, 158, 155, 152, 149, 146, 143, 140, 137, 134, 131, 128, 124, 121, 118, 115, 112, 109, 106, 103, 100, 97, 93, 90, 88, 85, 82, 79, 76, 73, 70, 67, 65, 62, 59, 57, 54, 52, 49, 47, 44, 42, 40, 37, 35, 33, 31, 29, 27, 25, 23, 21, 20, 18, 17, 15, 14, 12, 11, 10, 9, 7, 6, 5, 5, 4, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 9, 10, 11, 12, 14, 15, 17, 18, 20, 21, 23, 25, 27, 29, 31, 33, 35, 37, 40, 42, 44, 47, 49, 52, 54, 57, 59, 62, 65, 67, 70, 73, 76, 79, 82, 85, 88, 90, 93, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124}; void setFrequency(uint32_t frequency) { printf("1Timer Period for %u Hz\n", frequency); uint32_t timer_period = (32000000 / (SINE_TABLE_SIZE * frequency)) - 1; printf("Timer Period for %u Hz: %u\n", frequency, timer_period); __HAL_TIM_SET_AUTORELOAD(&htim2, timer_period); } void output_to_dac(uint16_t value){ HAL_GPIO_WritePin(GPIOB,r2r_0_Pin,(value & 0x01) ? GPIO_PIN_SET : GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOB,r2r_1_Pin,(value & 0x02) ? GPIO_PIN_SET : GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOB,r2r_2_Pin,(value & 0x04) ? GPIO_PIN_SET : GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOB,r2r_3_Pin,(value & 0x08) ? GPIO_PIN_SET : GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOB,r2r_4_Pin,(value & 0x10) ? GPIO_PIN_SET : GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOB,r2r_5_Pin,(value & 0x20) ? GPIO_PIN_SET : GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOB,r2r_6_Pin,(value & 0x40) ? GPIO_PIN_SET : GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOB,r2r_7_Pin,(value & 0x80) ? GPIO_PIN_SET : GPIO_PIN_RESET); } int _write(int file, char *ptr, int len) { HAL_UART_Transmit(&huart2, (uint8_t*)ptr, len, HAL_MAX_DELAY); return len; } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_TIM2_Init(); MX_USART2_UART_Init(); HAL_TIM_Base_Start_IT(&htim2); /* USER CODE BEGIN 2 */ printf("Start\n"); setFrequency(290); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInit = {0}; /** Configure the main internal regulator output voltage */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLLMUL_4; RCC_OscInitStruct.PLL.PLLDIV = RCC_PLLDIV_2; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) { Error_Handler(); } PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART2; PeriphClkInit.Usart2ClockSelection = RCC_USART2CLKSOURCE_PCLK1; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); } } /** * @brief TIM2 Initialization Function * @PAram None * @retval None */ static void MX_TIM2_Init(void) { /* USER CODE BEGIN TIM2_Init 0 */ /* USER CODE END TIM2_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM2_Init 1 */ /* USER CODE END TIM2_Init 1 */ htim2.Instance = TIM2; htim2.Init.Prescaler = 0; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.Period = 0; htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim2) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM2_Init 2 */ /* USER CODE END TIM2_Init 2 */ } // Timer interrupt callback void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { static uint32_t sample_index = 0; if (htim->Instance == TIM2) { output_to_dac(sineLookupTable[sample_index]); sample_index = (sample_index + 1) % SINE_TABLE_SIZE; HAL_GPIO_TogglePin(GPIOA,GPIO_PIN_0); } } /** * @brief USART2 Initialization Function * @PAram None * @retval None */ static void MX_USART2_UART_Init(void) { /* USER CODE BEGIN USART2_Init 0 */ /* USER CODE END USART2_Init 0 */ /* USER CODE BEGIN USART2_Init 1 */ /* USER CODE END USART2_Init 1 */ huart2.Instance = USART2; huart2.Init.BaudRate = 115200; huart2.Init.WordLength = UART_WORDLENGTH_8B; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX_RX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&huart2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART2_Init 2 */ /* USER CODE END USART2_Init 2 */ } /** * @brief GPIO Initialization Function * @PAram None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* USER CODE BEGIN MX_GPIO_Init_1 */ /* USER CODE END MX_GPIO_Init_1 */ /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOB, r2r_0_Pin|r2r_1_Pin|r2r_3_Pin|r2r_2_Pin |r2r_4_Pin|r2r_5_Pin|r2r_6_Pin|r2r_7_Pin, GPIO_PIN_RESET); /*Configure GPIO pin : PA0 */ GPIO_InitStruct.Pin = GPIO_PIN_0; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pins : r2r_0_Pin r2r_1_Pin r2r_3_Pin r2r_2_Pin r2r_4_Pin r2r_5_Pin r2r_6_Pin r2r_7_Pin */ GPIO_InitStruct.Pin = r2r_0_Pin|r2r_1_Pin|r2r_3_Pin|r2r_2_Pin |r2r_4_Pin|r2r_5_Pin|r2r_6_Pin|r2r_7_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /* USER CODE BEGIN MX_GPIO_Init_2 */ /* USER CODE END MX_GPIO_Init_2 */ } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @PAram file: pointer to the source file name * @PAram line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */
View more
1 ACCEPTED SOLUTION

Accepted Solutions
rutvik1110
Associate II

Hi everyone, I've managed to complete this task.

Here is the code:

 

/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2024 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ TIM_HandleTypeDef htim2; /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_TIM2_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ extern TIM_HandleTypeDef htim2; void GPIO_SetValue(uint8_t value) { uint16_t pins = 0; pins |= (value & 0x01) ? r2r_0_Pin : 0; pins |= (value & 0x02) ? r2r_1_Pin : 0; pins |= (value & 0x04) ? r2r_2_Pin : 0; pins |= (value & 0x08) ? r2r_3_Pin : 0; pins |= (value & 0x10) ? r2r_4_Pin : 0; pins |= (value & 0x20) ? r2r_5_Pin : 0; pins |= (value & 0x40) ? r2r_6_Pin : 0; pins |= (value & 0x80) ? r2r_7_Pin : 0; GPIOB->ODR = pins; } // Function to set new frequency void setSineWaveFrequency(uint32_t frequency) { // Stop Timer 2 HAL_TIM_Base_Stop_IT(&htim2); // Recalculate timer period based on new frequency uint32_t timer_clock = HAL_RCC_GetPCLK1Freq(); uint32_t period = timer_clock / (frequency * SINE_TABLE_SIZE); htim2.Init.Period = period-1; HAL_TIM_Base_Init(&htim2); // Restart Timer 2 HAL_TIM_Base_Start_IT(&htim2); } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_TIM2_Init(); /* USER CODE BEGIN 2 */ TIM2_Config(); sweep_duration_ms = 5000; /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ for( int i = START_FREQUENCY ; i<=STOP_FREQUENCY;i++){ setSineWaveFrequency(i); i +=FREQ_STEP; HAL_Delay(DELAY_MS); } HAL_GPIO_TogglePin(GPIOA,GPIO_PIN_0); // Sweep completed /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLLMUL_4; RCC_OscInitStruct.PLL.PLLDIV = RCC_PLLDIV_2; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) { Error_Handler(); } } /** * @brief TIM2 Initialization Function * @PAram None * @retval None */ static void MX_TIM2_Init(void) { /* USER CODE BEGIN TIM2_Init 0 */ /* USER CODE END TIM2_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM2_Init 1 */ /* USER CODE END TIM2_Init 1 */ htim2.Instance = TIM2; htim2.Init.Prescaler = 0; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.Period = 65536; htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim2) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM2_Init 2 */ /* USER CODE END TIM2_Init 2 */ } void TIM2_Config(void) { __HAL_RCC_TIM2_CLK_ENABLE(); htim2.Instance = TIM2; htim2.Init.Prescaler = 0; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.Period = 499; // Default period for 64 kHz htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; if (HAL_TIM_Base_Init(&htim2) != HAL_OK) { // Initialization Error Error_Handler(); } // Enable the TIM2 global Interrupt HAL_NVIC_SetPriority(TIM2_IRQn, 0, 1); HAL_NVIC_EnableIRQ(TIM2_IRQn); HAL_TIM_Base_Start_IT(&htim2); } /** * @brief GPIO Initialization Function * @PAram None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* USER CODE BEGIN MX_GPIO_Init_1 */ /* USER CODE END MX_GPIO_Init_1 */ /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOB, r2r_0_Pin|r2r_1_Pin|r2r_3_Pin|r2r_2_Pin |r2r_4_Pin|r2r_5_Pin|r2r_6_Pin|r2r_7_Pin, GPIO_PIN_RESET); /*Configure GPIO pin : PA0 */ GPIO_InitStruct.Pin = GPIO_PIN_0; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pins : r2r_0_Pin r2r_1_Pin r2r_3_Pin r2r_2_Pin r2r_4_Pin r2r_5_Pin r2r_6_Pin r2r_7_Pin */ GPIO_InitStruct.Pin = r2r_0_Pin|r2r_1_Pin|r2r_3_Pin|r2r_2_Pin |r2r_4_Pin|r2r_5_Pin|r2r_6_Pin|r2r_7_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /* USER CODE BEGIN MX_GPIO_Init_2 */ /* USER CODE END MX_GPIO_Init_2 */ } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @PAram file: pointer to the source file name * @PAram line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */
View more

View solution in original post

9 REPLIES 9
Uwe Bonnes
Principal III

HAL is not fast and GPIO write in HAL is even slower. Why don't you use  the built-in DAC?

printf() in the timing critical output routine will also eat up much cycles..

I have a R2R network and these bits generate sine waves. I don't know how to do this using built-in DAC, so if you can explain it, I'd be grateful. I have attached my circuit schematics. And printf() was just to debug the value.

Thanks in advance.

For use DAC read examples STM32CubeL0/Projects/NUCLEO-L073RZ at master · STMicroelectronics/STM32CubeL0 · GitHub

and your code need rewrite 

void output_to_dac(uint16_t value){ HAL_GPIO_WritePin(GPIOB,r2r_0_Pin,(value & 0x01) ? GPIO_PIN_SET : GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOB,r2r_1_Pin,(value & 0x02) ? GPIO_PIN_SET : GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOB,r2r_2_Pin,(value & 0x04) ? GPIO_PIN_SET : GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOB,r2r_3_Pin,(value & 0x08) ? GPIO_PIN_SET : GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOB,r2r_4_Pin,(value & 0x10) ? GPIO_PIN_SET : GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOB,r2r_5_Pin,(value & 0x20) ? GPIO_PIN_SET : GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOB,r2r_6_Pin,(value & 0x40) ? GPIO_PIN_SET : GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOB,r2r_7_Pin,(value & 0x80) ? GPIO_PIN_SET : GPIO_PIN_RESET); }

to somethink as

void output_to_dac(uint8_t value){ uint16_t temp = GPIOB->ODR & 0xff00; GPIOB->ODR |= value; }

Sorry, printf is not in the critical routine. For a start without the need to learn using the DAC, writing all 8 bits at a time will also speed up your code.

void output_to_dac(uint16_t value){ uint16_t pins_to_set = 0; pins_to_set |= ((value & 0x01) ? r2r_0_Pin : 0); pins_to_set |= ((value & 0x02) ? r2r_1_Pin : 0); pins_to_set |= ((value & 0x04) ? r2r_2_Pin : 0); pins_to_set |= ((value & 0x08) ? r2r_3_Pin : 0); pins_to_set |= ((value & 0x10) ? r2r_4_Pin : 0); pins_to_set |= ((value & 0x20) ? r2r_5_Pin : 0); pins_to_set |= ((value & 0x40) ? r2r_6_Pin : 0); pins_to_set |= ((value & 0x80) ? r2r_7_Pin : 0); HAL_GPIO_WritePin(GPIOB, pins_to_set, GPIO_PIN_SET); HAL_GPIO_WritePin(GPIOB, ~(pins_to_set) & 0xFF, GPIO_PIN_RESET); }

 

I changed my code so that the GPIO pins can be set and reset at the same time. The oscilloscope shows a constant output, not a sine wave.

void output_to_dac(uint16_t value){ uint16_t pins_to_set = 0; pins_to_set |= ((value & 0x01) ? r2r_0_Pin : 0); pins_to_set |= ((value & 0x02) ? r2r_1_Pin : 0); pins_to_set |= ((value & 0x04) ? r2r_2_Pin : 0); pins_to_set |= ((value & 0x08) ? r2r_3_Pin : 0); pins_to_set |= ((value & 0x10) ? r2r_4_Pin : 0); pins_to_set |= ((value & 0x20) ? r2r_5_Pin : 0); pins_to_set |= ((value & 0x40) ? r2r_6_Pin : 0); pins_to_set |= ((value & 0x80) ? r2r_7_Pin : 0); HAL_GPIO_WritePin(GPIOB, pins_to_set, GPIO_PIN_SET); HAL_GPIO_WritePin(GPIOB, ~(pins_to_set) & 0xFF, GPIO_PIN_RESET); }

 

I changed my code so that the GPIO pins can be set and reset at the same time. The oscilloscope shows a constant output, not a sine wave.

You dont show schematics, but when not connected same weight bits order on port B change your design ... and learn how to use bare metal registers GPIOB->BRR BSRR ODR ...

Capture3.PNG

Here is the schematics 

rutvik1110
Associate II

Hi everyone, I've managed to complete this task.

Here is the code:

 

/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2024 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ TIM_HandleTypeDef htim2; /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_TIM2_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ extern TIM_HandleTypeDef htim2; void GPIO_SetValue(uint8_t value) { uint16_t pins = 0; pins |= (value & 0x01) ? r2r_0_Pin : 0; pins |= (value & 0x02) ? r2r_1_Pin : 0; pins |= (value & 0x04) ? r2r_2_Pin : 0; pins |= (value & 0x08) ? r2r_3_Pin : 0; pins |= (value & 0x10) ? r2r_4_Pin : 0; pins |= (value & 0x20) ? r2r_5_Pin : 0; pins |= (value & 0x40) ? r2r_6_Pin : 0; pins |= (value & 0x80) ? r2r_7_Pin : 0; GPIOB->ODR = pins; } // Function to set new frequency void setSineWaveFrequency(uint32_t frequency) { // Stop Timer 2 HAL_TIM_Base_Stop_IT(&htim2); // Recalculate timer period based on new frequency uint32_t timer_clock = HAL_RCC_GetPCLK1Freq(); uint32_t period = timer_clock / (frequency * SINE_TABLE_SIZE); htim2.Init.Period = period-1; HAL_TIM_Base_Init(&htim2); // Restart Timer 2 HAL_TIM_Base_Start_IT(&htim2); } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_TIM2_Init(); /* USER CODE BEGIN 2 */ TIM2_Config(); sweep_duration_ms = 5000; /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ for( int i = START_FREQUENCY ; i<=STOP_FREQUENCY;i++){ setSineWaveFrequency(i); i +=FREQ_STEP; HAL_Delay(DELAY_MS); } HAL_GPIO_TogglePin(GPIOA,GPIO_PIN_0); // Sweep completed /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLLMUL_4; RCC_OscInitStruct.PLL.PLLDIV = RCC_PLLDIV_2; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) { Error_Handler(); } } /** * @brief TIM2 Initialization Function * @PAram None * @retval None */ static void MX_TIM2_Init(void) { /* USER CODE BEGIN TIM2_Init 0 */ /* USER CODE END TIM2_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM2_Init 1 */ /* USER CODE END TIM2_Init 1 */ htim2.Instance = TIM2; htim2.Init.Prescaler = 0; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.Period = 65536; htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim2) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM2_Init 2 */ /* USER CODE END TIM2_Init 2 */ } void TIM2_Config(void) { __HAL_RCC_TIM2_CLK_ENABLE(); htim2.Instance = TIM2; htim2.Init.Prescaler = 0; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.Period = 499; // Default period for 64 kHz htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; if (HAL_TIM_Base_Init(&htim2) != HAL_OK) { // Initialization Error Error_Handler(); } // Enable the TIM2 global Interrupt HAL_NVIC_SetPriority(TIM2_IRQn, 0, 1); HAL_NVIC_EnableIRQ(TIM2_IRQn); HAL_TIM_Base_Start_IT(&htim2); } /** * @brief GPIO Initialization Function * @PAram None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* USER CODE BEGIN MX_GPIO_Init_1 */ /* USER CODE END MX_GPIO_Init_1 */ /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOB, r2r_0_Pin|r2r_1_Pin|r2r_3_Pin|r2r_2_Pin |r2r_4_Pin|r2r_5_Pin|r2r_6_Pin|r2r_7_Pin, GPIO_PIN_RESET); /*Configure GPIO pin : PA0 */ GPIO_InitStruct.Pin = GPIO_PIN_0; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pins : r2r_0_Pin r2r_1_Pin r2r_3_Pin r2r_2_Pin r2r_4_Pin r2r_5_Pin r2r_6_Pin r2r_7_Pin */ GPIO_InitStruct.Pin = r2r_0_Pin|r2r_1_Pin|r2r_3_Pin|r2r_2_Pin |r2r_4_Pin|r2r_5_Pin|r2r_6_Pin|r2r_7_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /* USER CODE BEGIN MX_GPIO_Init_2 */ /* USER CODE END MX_GPIO_Init_2 */ } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @PAram file: pointer to the source file name * @PAram line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */
View more