int loopTime = 0, maxLoopTime = 0;
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
int main(void)
{
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* Configure the system clock */
SystemClock_Config();
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_ADC1_Init();
MX_ADC2_Init();
MX_COMP1_Init();
MX_COMP2_Init();
MX_COMP4_Init();
MX_DAC3_Init();
MX_OPAMP1_Init();
MX_OPAMP2_Init();
MX_OPAMP3_Init();
MX_TIM1_Init();
MX_IWDG_Init();
MX_I2C3_Init();
/* USER CODE BEGIN 2 */
SystemManager_Start();
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
LL_IWDG_ReloadCounter(IWDG);
SystemManager_Task();
static uint64_t _t = 0;
loopTime = HAL_GetTick_us()-_t;
_t = HAL_GetTick_us();
if(HAL_GetTick() > 5000 && loopTime > maxLoopTime)
maxLoopTime = loopTime;
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
LL_FLASH_SetLatency(LL_FLASH_LATENCY_4);
while(LL_FLASH_GetLatency() != LL_FLASH_LATENCY_4)
{
}
LL_PWR_EnableRange1BoostMode();
LL_RCC_HSE_Enable();
/* Wait till HSE is ready */
while(LL_RCC_HSE_IsReady() != 1)
{
}
LL_RCC_LSI_Enable();
/* Wait till LSI is ready */
while(LL_RCC_LSI_IsReady() != 1)
{
}
LL_RCC_HSE_EnableCSS();
LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSE, LL_RCC_PLLM_DIV_6, 85, LL_RCC_PLLR_DIV_2);
LL_RCC_PLL_EnableDomain_SYS();
LL_RCC_PLL_Enable();
/* Wait till PLL is ready */
while(LL_RCC_PLL_IsReady() != 1)
{
}
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL);
LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_2);
/* Wait till System clock is ready */
while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL)
{
}
/* Insure 1us transition state at intermediate medium speed clock*/
for (__IO uint32_t i = (170 >> 1); i !=0; i--);
/* Set AHB prescaler*/
LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1);
LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_1);
LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1);
LL_SetSystemCoreClock(170000000);
/* Update the time base */
if (HAL_InitTick (TICK_INT_PRIORITY) != HAL_OK)
{
Error_Handler();
}
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief Period elapsed callback in non blocking mode
* @note This function is called when TIM7 interrupt took place, inside
* HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
* a global variable "uwTick" used as application time base.
* @retval None
*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
/* USER CODE BEGIN Callback 0 */
/* USER CODE END Callback 0 */
if (htim->Instance == TIM7) {
HAL_IncTick();
}
/* USER CODE BEGIN Callback 1 */
/* USER CODE END Callback 1 */
}
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
*
@PAram file: pointer to the source file name
*
@PAram line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
LL_ADC_InitTypeDef ADC_InitStruct = {0};
LL_ADC_REG_InitTypeDef ADC_REG_InitStruct = {0};
LL_ADC_CommonInitTypeDef ADC_CommonInitStruct = {0};
LL_ADC_INJ_InitTypeDef ADC_INJ_InitStruct = {0};
LL_GPIO_InitTypeDef GPIO_InitStruct = {0};
LL_RCC_SetADCClockSource(LL_RCC_ADC12_CLKSOURCE_SYSCLK);
/* Peripheral clock enable */
LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_ADC12);
LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOA);
LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOB);
/**ADC1 GPIO Configuration
PA0 ------> ADC1_IN1
PA2 ------> ADC1_IN3
PB1 ------> ADC1_IN12
*/
GPIO_InitStruct.Pin = VCC_HV_MON_Pin;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
LL_GPIO_Init(VCC_HV_MON_GPIO_Port, &GPIO_InitStruct);
GPIO_InitStruct.Pin = U_CURRENT_Pin;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
LL_GPIO_Init(U_CURRENT_GPIO_Port, &GPIO_InitStruct);
GPIO_InitStruct.Pin = W_CURRENT_Pin;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
LL_GPIO_Init(W_CURRENT_GPIO_Port, &GPIO_InitStruct);
/* ADC1 DMA Init */
/* ADC1 Init */
LL_DMA_SetPeriphRequest(DMA1, LL_DMA_CHANNEL_1, LL_DMAMUX_REQ_ADC1);
LL_DMA_SetDataTransferDirection(DMA1, LL_DMA_CHANNEL_1, LL_DMA_DIRECTION_PERIPH_TO_MEMORY);
LL_DMA_SetChannelPriorityLevel(DMA1, LL_DMA_CHANNEL_1, LL_DMA_PRIORITY_HIGH);
LL_DMA_SetMode(DMA1, LL_DMA_CHANNEL_1, LL_DMA_MODE_CIRCULAR);
LL_DMA_SetPeriphIncMode(DMA1, LL_DMA_CHANNEL_1, LL_DMA_PERIPH_NOINCREMENT);
LL_DMA_SetMemoryIncMode(DMA1, LL_DMA_CHANNEL_1, LL_DMA_MEMORY_INCREMENT);
LL_DMA_SetPeriphSize(DMA1, LL_DMA_CHANNEL_1, LL_DMA_PDATAALIGN_HALFWORD);
LL_DMA_SetMemorySize(DMA1, LL_DMA_CHANNEL_1, LL_DMA_MDATAALIGN_HALFWORD);
/* ADC1 interrupt Init */
NVIC_SetPriority(ADC1_2_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),0, 0));
NVIC_EnableIRQ(ADC1_2_IRQn);
/* USER CODE BEGIN ADC1_Init 1 */
LL_DMA_ConfigAddresses(DMA1,LL_DMA_CHANNEL_1,LL_ADC_DMA_GetRegAddr(ADC1, LL_ADC_DMA_REG_REGULAR_DATA),
(uint32_t)Veriables_Analog.AdcVal.mcBusVoltage,LL_DMA_DIRECTION_PERIPH_TO_MEMORY);
LL_DMA_SetDataLength(DMA1,LL_DMA_CHANNEL_1,3);
/* Enable DMA transfer interruption: transfer complete */
LL_DMA_EnableIT_TC(DMA1,LL_DMA_CHANNEL_1);
/* Enable DMA transfer interruption: half transfer */
// LL_DMA_EnableIT_HT(DMA1,LL_DMA_CHANNEL_1);
/* Enable DMA transfer interruption: transfer error */
LL_DMA_EnableIT_TE(DMA1,LL_DMA_CHANNEL_1);
LL_DMA_EnableChannel(DMA1,LL_DMA_CHANNEL_1);
/* USER CODE END ADC1_Init 1 */
/** Common config
*/
ADC_InitStruct.Resolution = LL_ADC_RESOLUTION_12B;
ADC_InitStruct.DataAlignment = LL_ADC_DATA_ALIGN_RIGHT;
ADC_InitStruct.LowPowerMode = LL_ADC_LP_MODE_NONE;
LL_ADC_Init(ADC1, &ADC_InitStruct);
ADC_REG_InitStruct.TriggerSource = LL_ADC_REG_TRIG_SOFTWARE;
ADC_REG_InitStruct.SequencerLength = LL_ADC_REG_SEQ_SCAN_ENABLE_3RANKS;
ADC_REG_InitStruct.SequencerDiscont = LL_ADC_REG_SEQ_DISCONT_DISABLE;
ADC_REG_InitStruct.ContinuousMode = LL_ADC_REG_CONV_CONTINUOUS;
ADC_REG_InitStruct.DMATransfer = LL_ADC_REG_DMA_TRANSFER_UNLIMITED;
ADC_REG_InitStruct.Overrun = LL_ADC_REG_OVR_DATA_PRESERVED;
LL_ADC_REG_Init(ADC1, &ADC_REG_InitStruct);
LL_ADC_SetGainCompensation(ADC1, 0);
LL_ADC_SetOverSamplingScope(ADC1, LL_ADC_OVS_DISABLE);
ADC_CommonInitStruct.CommonClock = LL_ADC_CLOCK_SYNC_PCLK_DIV4;
ADC_CommonInitStruct.Multimode = LL_ADC_MULTI_INDEPENDENT;
LL_ADC_CommonInit(__LL_ADC_COMMON_INSTANCE(ADC1), &ADC_CommonInitStruct);
LL_ADC_SetCommonClock(ADC12_COMMON,LL_ADC_CLOCK_SYNC_PCLK_DIV4);
while(LL_ADC_GetCommonClock(ADC12_COMMON) != LL_ADC_CLOCK_SYNC_PCLK_DIV4){}
//Errors_Handler();
// ADC_INJ_InitStruct.TriggerSource = LL_ADC_INJ_TRIG_EXT_TIM1_CH4;
// ADC_INJ_InitStruct.SequencerLength = LL_ADC_INJ_SEQ_SCAN_ENABLE_2RANKS;
// ADC_INJ_InitStruct.SequencerDiscont = LL_ADC_INJ_SEQ_DISCONT_DISABLE;
// ADC_INJ_InitStruct.TrigAuto = LL_ADC_INJ_TRIG_INDEPENDENT;
// LL_ADC_INJ_Init(ADC1, &ADC_INJ_InitStruct);
// LL_ADC_INJ_SetQueueMode(ADC1, LL_ADC_INJ_QUEUE_DISABLE);
// LL_ADC_INJ_SetTriggerEdge(ADC1, LL_ADC_INJ_TRIG_EXT_RISING);
/* Disable ADC deep power down (enabled by default after reset state) */
LL_ADC_DisableDeepPowerDown(ADC1);
/* Enable ADC internal voltage regulator */
LL_ADC_EnableInternalRegulator(ADC1);
/* Delay for ADC internal voltage regulator stabilization. */
/* Compute number of CPU cycles to wait for, from delay in us. */
/* Note: Variable divided by 2 to compensate partially */
/* CPU processing cycles (depends on compilation optimization). */
/* Note: If system core clock frequency is below 200kHz, wait time */
/* is only a few CPU processing cycles. */
uint32_t wait_loop_index;
wait_loop_index = ((LL_ADC_DELAY_INTERNAL_REGUL_STAB_US * (SystemCoreClock / (100000 * 2))) / 10);
while(wait_loop_index != 0)
{
wait_loop_index--;
}
/** Configure Injected Channel
*/
// LL_ADC_INJ_SetSequencerRanks(ADC1, LL_ADC_INJ_RANK_1, LL_ADC_CHANNEL_3);
// LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_3, LL_ADC_SAMPLINGTIME_12CYCLES_5);
// LL_ADC_SetChannelSingleDiff(ADC1, LL_ADC_CHANNEL_3, LL_ADC_SINGLE_ENDED);
// /** Configure Injected Channel
// */
// LL_ADC_INJ_SetSequencerRanks(ADC1, LL_ADC_INJ_RANK_2, LL_ADC_CHANNEL_12);
// LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_12, LL_ADC_SAMPLINGTIME_12CYCLES_5);
// LL_ADC_SetChannelSingleDiff(ADC1, LL_ADC_CHANNEL_12, LL_ADC_SINGLE_ENDED);
/** Configure Regular Channel
*/
LL_ADC_REG_SetSequencerRanks(ADC1, LL_ADC_REG_RANK_1, LL_ADC_CHANNEL_1);
LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_1, LL_ADC_SAMPLINGTIME_640CYCLES_5);
LL_ADC_SetChannelSingleDiff(ADC1, LL_ADC_CHANNEL_1, LL_ADC_SINGLE_ENDED);
/** Configure Regular Channel
*/
LL_ADC_REG_SetSequencerRanks(ADC1, LL_ADC_REG_RANK_2, LL_ADC_CHANNEL_TEMPSENSOR_ADC1);
LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_TEMPSENSOR_ADC1, LL_ADC_SAMPLINGTIME_640CYCLES_5);
LL_ADC_SetChannelSingleDiff(ADC1, LL_ADC_CHANNEL_TEMPSENSOR_ADC1, LL_ADC_SINGLE_ENDED);
LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_PATH_INTERNAL_VREFINT|LL_ADC_PATH_INTERNAL_TEMPSENSOR);
/** Configure Regular Channel
*/
LL_ADC_REG_SetSequencerRanks(ADC1, LL_ADC_REG_RANK_3, LL_ADC_CHANNEL_VREFINT);
LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_VREFINT, LL_ADC_SAMPLINGTIME_640CYCLES_5);
LL_ADC_SetChannelSingleDiff(ADC1, LL_ADC_CHANNEL_VREFINT, LL_ADC_SINGLE_ENDED);
/* USER CODE BEGIN ADC1_Init 2 */
/* Enable interruption ADC group regular end of unitary conversion */
LL_ADC_EnableIT_EOS(ADC1);
while(LL_ADC_IsEnabledIT_EOS(ADC1) == 0){}
LL_ADC_EnableIT_EOC(ADC1);
//LL_ADC_DisableIT_EOC(ADC1);
while(LL_ADC_IsEnabledIT_EOC(ADC1) == 0){} /* == 0 if Enabled*/
LL_ADC_DisableIT_EOSMP(ADC1);
/* Enable interruption ADC group end of injected conversion */
LL_ADC_EnableIT_JEOC(ADC1);
while(LL_ADC_IsEnabledIT_JEOC(ADC1) == 0){}
LL_ADC_DisableIT_JEOS(ADC1);
while(LL_ADC_IsEnabledIT_JEOS(ADC1) != 0){}
LL_ADC_StartCalibration(ADC1, LL_ADC_SINGLE_ENDED);
wait_loop_index = (ADC_DELAY_CALIB_ENABLE_CPU_CYCLES >> 1);
while(wait_loop_index != 0)
{
wait_loop_index--;
}
/* USER CODE END ADC1_Init 2 */
}
/* ADC2 init function */
void MX_ADC2_Init(void)
{
/* USER CODE BEGIN ADC2_Init 0 */
/* USER CODE END ADC2_Init 0 */
LL_ADC_InitTypeDef ADC_InitStruct = {0};
LL_ADC_REG_InitTypeDef ADC_REG_InitStruct = {0};
LL_ADC_INJ_InitTypeDef ADC_INJ_InitStruct = {0};
LL_GPIO_InitTypeDef GPIO_InitStruct = {0};
LL_RCC_SetADCClockSource(LL_RCC_ADC12_CLKSOURCE_SYSCLK);
/* Peripheral clock enable */
LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_ADC12);
LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOA);
LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOC);
/**ADC2 GPIO Configuration
PA6 ------> ADC2_IN3
PC4 ------> ADC2_IN5
*/
GPIO_InitStruct.Pin = V_CURRENT_Pin;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
LL_GPIO_Init(V_CURRENT_GPIO_Port, &GPIO_InitStruct);
GPIO_InitStruct.Pin = TEMP_SENS_1C4_Pin;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
LL_GPIO_Init(TEMP_SENS_1C4_GPIO_Port, &GPIO_InitStruct);
/* ADC2 DMA Init */
/* ADC2 Init */
LL_DMA_SetPeriphRequest(DMA1, LL_DMA_CHANNEL_2, LL_DMAMUX_REQ_ADC2);
LL_DMA_SetDataTransferDirection(DMA1, LL_DMA_CHANNEL_2, LL_DMA_DIRECTION_PERIPH_TO_MEMORY);
LL_DMA_SetChannelPriorityLevel(DMA1, LL_DMA_CHANNEL_2, LL_DMA_PRIORITY_MEDIUM);
LL_DMA_SetMode(DMA1, LL_DMA_CHANNEL_2, LL_DMA_MODE_CIRCULAR);
LL_DMA_SetPeriphIncMode(DMA1, LL_DMA_CHANNEL_2, LL_DMA_PERIPH_NOINCREMENT);
LL_DMA_SetMemoryIncMode(DMA1, LL_DMA_CHANNEL_2, LL_DMA_MEMORY_INCREMENT);
LL_DMA_SetPeriphSize(DMA1, LL_DMA_CHANNEL_2, LL_DMA_PDATAALIGN_HALFWORD);
LL_DMA_SetMemorySize(DMA1, LL_DMA_CHANNEL_2, LL_DMA_MDATAALIGN_HALFWORD);
/* ADC2 interrupt Init */
NVIC_SetPriority(ADC1_2_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),0, 0));
NVIC_EnableIRQ(ADC1_2_IRQn);
/* USER CODE BEGIN ADC2_Init 1 */
LL_DMA_ConfigAddresses(DMA1,LL_DMA_CHANNEL_2,LL_ADC_DMA_GetRegAddr(ADC2, LL_ADC_DMA_REG_REGULAR_DATA),
(uint32_t)Veriables_Analog.AdcVal.mosfetTemp,LL_DMA_DIRECTION_PERIPH_TO_MEMORY);
LL_DMA_SetDataLength(DMA1,LL_DMA_CHANNEL_2,1);
/* Enable DMA transfer interruption: transfer complete */
LL_DMA_EnableIT_TC(DMA1,LL_DMA_CHANNEL_2);
/* Enable DMA transfer interruption: half transfer */
// LL_DMA_EnableIT_HT(DMA1,LL_DMA_CHANNEL_1);
/* Enable DMA transfer interruption: transfer error */
LL_DMA_EnableIT_TE(DMA1,LL_DMA_CHANNEL_2);
LL_DMA_EnableChannel(DMA1,LL_DMA_CHANNEL_2);
/* USER CODE END ADC2_Init 1 */
/** Common config
*/
ADC_InitStruct.Resolution = LL_ADC_RESOLUTION_12B;
ADC_InitStruct.DataAlignment = LL_ADC_DATA_ALIGN_RIGHT;
ADC_InitStruct.LowPowerMode = LL_ADC_LP_MODE_NONE;
LL_ADC_Init(ADC2, &ADC_InitStruct);
ADC_REG_InitStruct.TriggerSource = LL_ADC_REG_TRIG_SOFTWARE;
ADC_REG_InitStruct.SequencerLength = LL_ADC_REG_SEQ_SCAN_DISABLE;
ADC_REG_InitStruct.SequencerDiscont = LL_ADC_REG_SEQ_DISCONT_DISABLE;
ADC_REG_InitStruct.ContinuousMode = LL_ADC_REG_CONV_CONTINUOUS;
ADC_REG_InitStruct.DMATransfer = LL_ADC_REG_DMA_TRANSFER_UNLIMITED;
ADC_REG_InitStruct.Overrun = LL_ADC_REG_OVR_DATA_PRESERVED;
LL_ADC_REG_Init(ADC2, &ADC_REG_InitStruct);
LL_ADC_SetGainCompensation(ADC2, 0);
LL_ADC_SetOverSamplingScope(ADC2, LL_ADC_OVS_DISABLE);
ADC_INJ_InitStruct.TriggerSource = LL_ADC_INJ_TRIG_EXT_TIM1_CH4;
ADC_INJ_InitStruct.SequencerLength = LL_ADC_INJ_SEQ_SCAN_DISABLE;
ADC_INJ_InitStruct.SequencerDiscont = LL_ADC_INJ_SEQ_DISCONT_DISABLE;
ADC_INJ_InitStruct.TrigAuto = LL_ADC_INJ_TRIG_INDEPENDENT;
LL_ADC_INJ_Init(ADC2, &ADC_INJ_InitStruct);
LL_ADC_INJ_SetQueueMode(ADC2, LL_ADC_INJ_QUEUE_DISABLE);
LL_ADC_INJ_SetTriggerEdge(ADC2, LL_ADC_INJ_TRIG_EXT_RISING);
/* Disable ADC deep power down (enabled by default after reset state) */
LL_ADC_DisableDeepPowerDown(ADC2);
/* Enable ADC internal voltage regulator */
LL_ADC_EnableInternalRegulator(ADC2);
/* Delay for ADC internal voltage regulator stabilization. */
/* Compute number of CPU cycles to wait for, from delay in us. */
/* Note: Variable divided by 2 to compensate partially */
/* CPU processing cycles (depends on compilation optimization). */
/* Note: If system core clock frequency is below 200kHz, wait time */
/* is only a few CPU processing cycles. */
uint32_t wait_loop_index;
wait_loop_index = ((LL_ADC_DELAY_INTERNAL_REGUL_STAB_US * (SystemCoreClock / (100000 * 2))) / 10);
while(wait_loop_index != 0)
{
wait_loop_index--;
}
/** Configure Injected Channel
*/
LL_ADC_INJ_SetSequencerRanks(ADC2, LL_ADC_INJ_RANK_1, LL_ADC_CHANNEL_3);
LL_ADC_SetChannelSamplingTime(ADC2, LL_ADC_CHANNEL_3, LL_ADC_SAMPLINGTIME_12CYCLES_5);
LL_ADC_SetChannelSingleDiff(ADC2, LL_ADC_CHANNEL_3, LL_ADC_SINGLE_ENDED);
/** Configure Regular Channel
*/
LL_ADC_REG_SetSequencerRanks(ADC2, LL_ADC_REG_RANK_1, LL_ADC_CHANNEL_5);
LL_ADC_SetChannelSamplingTime(ADC2, LL_ADC_CHANNEL_5, LL_ADC_SAMPLINGTIME_640CYCLES_5);
LL_ADC_SetChannelSingleDiff(ADC2, LL_ADC_CHANNEL_5, LL_ADC_SINGLE_ENDED);
/* USER CODE BEGIN ADC2_Init 2 */
/* Enable interruption ADC group regular end of unitary conversion */
LL_ADC_EnableIT_EOS(ADC2);
while(LL_ADC_IsEnabledIT_EOS(ADC2) == 0){}
//LL_ADC_DisableIT_EOC(ADC2);
LL_ADC_EnableIT_EOC(ADC2);
while(LL_ADC_IsEnabledIT_EOC(ADC2) == 0){}
LL_ADC_DisableIT_EOSMP(ADC2);
/* Enable interruption ADC group end of injected conversion */
LL_ADC_EnableIT_JEOC(ADC2);
while(LL_ADC_IsEnabledIT_JEOC(ADC2) == 0){}
LL_ADC_DisableIT_JEOS(ADC2);
while(LL_ADC_IsEnabledIT_JEOS(ADC2) != 0){}
LL_ADC_StartCalibration(ADC2, LL_ADC_SINGLE_ENDED);
/* Delay between ADC end of calibration and ADC enable. */
/* Note: Variable divided by 2 to compensate partially */
/* CPU processing cycles (depends on compilation optimization). */
wait_loop_index = (ADC_DELAY_CALIB_ENABLE_CPU_CYCLES >> 1);
while(wait_loop_index != 0)
{
wait_loop_index--;
}
/* USER CODE END ADC2_Init 2 */
}
void SystemManager_Start(void)
{
GD_Start();
Analog_Start();
LL_TIM_CC_EnableChannel(TIM1, LL_TIM_CHANNEL_CH1);
LL_TIM_CC_EnableChannel(TIM1, LL_TIM_CHANNEL_CH1N);
LL_TIM_CC_EnableChannel(TIM1, LL_TIM_CHANNEL_CH2);
LL_TIM_CC_EnableChannel(TIM1, LL_TIM_CHANNEL_CH2N);
LL_TIM_CC_EnableChannel(TIM1, LL_TIM_CHANNEL_CH3);
LL_TIM_CC_EnableChannel(TIM1, LL_TIM_CHANNEL_CH3N);
LL_TIM_CC_EnableChannel(TIM1, LL_TIM_CHANNEL_CH4);
LL_TIM_EnableAllOutputs(TIM1);
/* Enable counter */
LL_TIM_EnableCounter(TIM1);
while(LL_TIM_IsEnabledCounter(TIM1) == 0){}
TIM1->CCR1 = 0;
TIM1->CCR2 = 0;
TIM1->CCR3 = 0;
HAL_Delay(100);
LL_GPIO_SetOutputPin(GD_WAKE_GPIO_Port,GD_WAKE_Pin);
HAL_Delay(10);
}
void Analog_Start(void)
{
LL_ADC_ClearFlag_EOC(ADC1);
LL_ADC_ClearFlag_EOS(ADC1);
LL_ADC_ClearFlag_EOSMP(ADC1);
LL_ADC_ClearFlag_EOC(ADC2);
LL_ADC_ClearFlag_EOS(ADC2);
LL_ADC_ClearFlag_EOSMP(ADC2);
LL_ADC_ClearFlag_ADRDY(ADC1);
LL_ADC_ClearFlag_ADRDY(ADC2);
LL_ADC_Enable(ADC1);
LL_ADC_Enable(ADC2);
while(LL_ADC_IsActiveFlag_ADRDY(ADC1) && LL_ADC_IsActiveFlag_ADRDY(ADC2) !=1){}
while(LL_ADC_IsEnabled(ADC1) && LL_ADC_IsEnabled(ADC2) != 1){}
if((LL_ADC_REG_IsConversionOngoing(ADC1) || LL_ADC_REG_IsConversionOngoing(ADC2)) == 0){
LL_ADC_REG_StartConversion(ADC1);
LL_ADC_REG_StartConversion(ADC2);
}
}