cancel
Showing results for 
Search instead for 
Did you mean: 

When running the command: python stm32ai_main.py --config-path--config-name,error:the same file

llcc
Associate II

D:\stm32aibushu\stm32ai-modelzoo-services\object_detection\src>python stm32ai_main.py --config-path ./config_file_examples/ --config-name my_deployment_n6_ssd_mobilenet_v2_fpnlite_config.yaml
2025-05-16 11:30:17.018496: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cudart64_110.dll'; dlerror: cudart64_110.dll not found
2025-05-16 11:30:17.018747: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
[WARNING] The usable GPU memory is unlimited.
Please consider setting the 'gpu_memory_limit' attribute in the 'general' section of your configuration file.
[INFO] : Running `deployment` operation mode
[INFO] : ClearML config check
[INFO] : The random seed for this simulation is 123
INFO: Created TensorFlow Lite XNNPACK delegate for CPU.
[INFO] : Generating C header file for Getting Started...
[INFO] : This TFLITE model doesnt contain a post-processing layer
loading model.. model_path="D:/stm32aibushu/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite"
loading conf file.. "../../application_code/object_detection/STM32N6/stmaic_STM32N6570-DK.conf" config="None"
"n6 release" configuration is used
[INFO] : Selected board : "STM32N6570-DK Getting Started Object Detection (STM32CubeIDE)" (stm32_cube_ide/n6 release/stm32n6)
[INFO] : Compiling the model and generating optimized C code + Lib/Inc files: D:/stm32aibushu/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite
setting STM.AI tools.. root_dir="", req_version=""
Cube AI Path: "D:\stm32edgeai\stedgeai\2.1\Utilities\windows\stedgeai.exe".
[INFO] : Offline CubeAI used; Selected tools: 10.1.0 (x-cube-ai pack)
loading conf file.. "../../application_code/object_detection/STM32N6/stmaic_STM32N6570-DK.conf" config="None"
"n6 release" configuration is used
compiling... "ssd_mobilenet_v2_fpnlite_035_192_int8_tflite" session
model_path : ['D:/stm32aibushu/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite']
tools : 10.1.0 (x-cube-ai pack)
target : "STM32N6570-DK Getting Started Object Detection (STM32CubeIDE)" (stm32_cube_ide/n6 release/stm32n6)
options : --st-neural-art default@../../application_code/object_detection/STM32N6/Model/user_neuralart.json --input-data-type uint8 --inputs-ch-position chlast
[returned code = 4294967295 - FAILED]
$ cwd: None
$ args: D:\stm32edgeai\stedgeai\2.1\Utilities\windows\stedgeai.exe generate --target stm32n6 -m D:/stm32aibushu/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite --output D:\stm32aibushu\stm32ai-modelzoo-services\object_detection\src\experiments_outputs\2025_05_16_11_30_18 --workspace D:\stm32aibushu\stm32ai-modelzoo-services\object_detection\src\experiments_outputs\2025_05_16_11_30_18 --st-neural-art default@../../application_code/object_detection/STM32N6/Model/user_neuralart.json --input-data-type uint8 --inputs-ch-position chlast
ST Edge AI Core v2.1.0-20194 329b0e98d

PASS: 0%| | 0/92 [00:00<?, ?it/s]
PASS: 12%|█▏ | 11/92 [00:16<01:59, 1.48s/it]
PASS: 13%|█▎ | 12/92 [00:17<01:56, 1.46s/it]
PASS: 17%|█▋ | 16/92 [00:17<01:08, 1.11it/s]
PASS: 20%|█▉ | 18/92 [00:18<00:57, 1.30it/s]
PASS: 21%|██ | 19/92 [00:18<00:50, 1.46it/s]
PASS: 22%|██▏ | 20/92 [00:18<00:44, 1.63it/s]
PASS: 24%|██▍ | 22/92 [00:19<00:32, 2.15it/s]
PASS: 25%|██▌ | 23/92 [00:19<00:28, 2.39it/s]
PASS: 27%|██▋ | 25/92 [00:19<00:20, 3.29it/s]
PASS: 28%|██▊ | 26/92 [00:19<00:18, 3.63it/s]
PASS: 29%|██▉ | 27/92 [00:19<00:16, 3.88it/s]
PASS: 35%|███▍ | 32/92 [00:20<00:07, 7.81it/s]
PASS: 37%|███▋ | 34/92 [00:20<00:08, 7.13it/s]
PASS: 38%|███▊ | 35/92 [00:20<00:08, 6.97it/s]
PASS: 39%|███▉ | 36/92 [00:20<00:08, 6.70it/s]
PASS: 40%|████ | 37/92 [00:20<00:08, 6.58it/s]
PASS: 41%|████▏ | 38/92 [00:21<00:08, 6.48it/s]
PASS: 42%|████▏ | 39/92 [00:21<00:08, 6.37it/s]
PASS: 43%|████▎ | 40/92 [00:21<00:08, 6.31it/s]
PASS: 45%|████▍ | 41/92 [00:21<00:08, 6.11it/s]
PASS: 46%|████▌ | 42/92 [00:21<00:08, 6.00it/s]
PASS: 47%|████▋ | 43/92 [00:21<00:08, 5.93it/s]
PASS: 48%|████▊ | 44/92 [00:22<00:07, 6.12it/s]
PASS: 49%|████▉ | 45/92 [00:22<00:07, 6.02it/s]
PASS: 50%|█████ | 46/92 [00:22<00:07, 6.06it/s]
PASS: 51%|█████ | 47/92 [00:22<00:07, 6.03it/s]
PASS: 52%|█████▏ | 48/92 [00:22<00:07, 5.98it/s]
PASS: 53%|█████▎ | 49/92 [00:22<00:07, 6.02it/s]
PASS: 54%|█████▍ | 50/92 [00:23<00:06, 6.01it/s]
PASS: 55%|█████▌ | 51/92 [00:23<00:06, 5.90it/s]
PASS: 57%|█████▋ | 52/92 [00:23<00:06, 5.74it/s]
PASS: 58%|█████▊ | 53/92 [00:23<00:06, 5.65it/s]
PASS: 59%|█████▊ | 54/92 [00:23<00:06, 5.78it/s]
PASS: 60%|█████▉ | 55/92 [00:23<00:06, 5.88it/s]
PASS: 63%|██████▎ | 58/92 [00:24<00:03, 8.58it/s]
PASS: 64%|██████▍ | 59/92 [00:24<00:05, 6.55it/s]
PASS: 65%|██████▌ | 60/92 [00:24<00:05, 6.15it/s]
PASS: 67%|██████▋ | 62/92 [00:24<00:04, 6.72it/s]
PASS: 68%|██████▊ | 63/92 [00:25<00:04, 6.39it/s]
PASS: 70%|██████▉ | 64/92 [00:25<00:04, 6.13it/s]
PASS: 71%|███████ | 65/92 [00:25<00:04, 5.84it/s]
PASS: 72%|███████▏ | 66/92 [00:25<00:04, 5.65it/s]
PASS: 73%|███████▎ | 67/92 [00:25<00:04, 5.42it/s]
PASS: 74%|███████▍ | 68/92 [00:26<00:04, 5.35it/s]
PASS: 75%|███████▌ | 69/92 [00:26<00:04, 5.37it/s]
PASS: 76%|███████▌ | 70/92 [00:26<00:04, 4.46it/s]
PASS: 77%|███████▋ | 71/92 [00:26<00:04, 4.45it/s]
PASS: 78%|███████▊ | 72/92 [00:26<00:04, 4.71it/s]
PASS: 80%|████████ | 74/92 [00:27<00:02, 6.09it/s]
PASS: 82%|████████▏ | 75/92 [00:27<00:02, 5.93it/s]
PASS: 84%|████████▎ | 77/92 [00:27<00:02, 7.07it/s]
PASS: 85%|████████▍ | 78/92 [00:27<00:02, 6.52it/s]
PASS: 86%|████████▌ | 79/92 [00:27<00:02, 5.91it/s]
PASS: 87%|████████▋ | 80/92 [00:28<00:02, 5.71it/s]
PASS: 88%|████████▊ | 81/92 [00:28<00:01, 5.53it/s]
PASS: 89%|████████▉ | 82/92 [00:28<00:01, 5.46it/s]
PASS: 90%|█████████ | 83/92 [00:28<00:01, 5.36it/s]
PASS: 91%|█████████▏| 84/92 [00:34<00:15, 1.92s/it]

>>>> EXECUTING NEURAL ART COMPILER

PASS: 91%|█████████▏| 84/92 [00:34<00:15, 1.92s/it]

D:/stm32edgeai/stedgeai/2.1/Utilities/windows/atonn.exe -i "D:/stm32aibushu/stm32ai-modelzoo-services/object_detection/src/experiments_outputs/2025_05_16_11_30_18/ssd_mobilenet_v2_fpnlite_035_192_int8_OE_3_2_0.onnx" --json-quant-file "D:/stm32aibushu/stm32ai-modelzoo-services/object_detection/src/experiments_outputs/2025_05_16_11_30_18/ssd_mobilenet_v2_fpnlite_035_192_int8_OE_3_2_0_Q.json" -g "network.c" --load-mdesc "D:/stm32edgeai/stedgeai/2.1/Utilities/configs/stm32n6.mdesc" --load-mpool "D:/stm32aibushu/stm32ai-modelzoo-services/application_code/object_detection/STM32N6/Model/my_mpools/stm32n6-app2.mpool" --save-mpool-file "D:/stm32aibushu/stm32ai-modelzoo-services/object_detection/src/experiments_outputs/2025_05_16_11_30_18/neural_art__network/stm32n6-app2.mpool" --out-dir-prefix "D:/stm32aibushu/stm32ai-modelzoo-services/object_detection/src/experiments_outputs/2025_05_16_11_30_18/neural_art__network/" --all-buffers-info --no-hw-sw-parallelism --cache-maintenance --enable-virtual-mem-pools --native-float --optimization 3 --Os --Omax-ca-pipe 4 --Ocache-opt --enable-epoch-controller --output-info-file "c_info.json"

PASS: 91%|█████████▏| 84/92 [00:34<00:15, 1.92s/it]

<<<< DONE EXECUTING NEURAL ART COMPILER

PASS: 91%|█████████▏| 84/92 [00:37<00:15, 1.92s/it]
PASS: 92%|█████████▏| 85/92 [00:38<00:17, 2.55s/it]


LOAD ERROR: WindowsPath('D:/stm32aibushu/stm32ai-modelzoo-services/object_detection/src/experiments_outputs/2025_05_16_11_30_18/network.h') and WindowsPath('D:/stm32aibushu/stm32ai-modelzoo-services/object_detection/src/experiments_outputs/2025_05_16_11_30_18/network.h') are the same file
$ cwd: None
$ args: D:\stm32edgeai\stedgeai\2.1\Utilities\windows\stedgeai.exe generate --target stm32n6 -m D:/stm32aibushu/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite --output D:\stm32aibushu\stm32ai-modelzoo-services\object_detection\src\experiments_outputs\2025_05_16_11_30_18 --workspace D:\stm32aibushu\stm32ai-modelzoo-services\object_detection\src\experiments_outputs\2025_05_16_11_30_18 --st-neural-art default@../../application_code/object_detection/STM32N6/Model/user_neuralart.json --input-data-type uint8 --inputs-ch-position chlast
ST Edge AI Core v2.1.0-20194 329b0e98d

PASS: 0%| | 0/92 [00:00<?, ?it/s]
PASS: 12%|█▏ | 11/92 [00:16<01:59, 1.48s/it]
PASS: 13%|█▎ | 12/92 [00:17<01:56, 1.46s/it]
PASS: 17%|█▋ | 16/92 [00:17<01:08, 1.11it/s]
PASS: 20%|█▉ | 18/92 [00:18<00:57, 1.30it/s]
PASS: 21%|██ | 19/92 [00:18<00:50, 1.46it/s]
PASS: 22%|██▏ | 20/92 [00:18<00:44, 1.63it/s]
PASS: 24%|██▍ | 22/92 [00:19<00:32, 2.15it/s]
PASS: 25%|██▌ | 23/92 [00:19<00:28, 2.39it/s]
PASS: 27%|██▋ | 25/92 [00:19<00:20, 3.29it/s]
PASS: 28%|██▊ | 26/92 [00:19<00:18, 3.63it/s]
PASS: 29%|██▉ | 27/92 [00:19<00:16, 3.88it/s]
PASS: 35%|███▍ | 32/92 [00:20<00:07, 7.81it/s]
PASS: 37%|███▋ | 34/92 [00:20<00:08, 7.13it/s]
PASS: 38%|███▊ | 35/92 [00:20<00:08, 6.97it/s]
PASS: 39%|███▉ | 36/92 [00:20<00:08, 6.70it/s]
PASS: 40%|████ | 37/92 [00:20<00:08, 6.58it/s]
PASS: 41%|████▏ | 38/92 [00:21<00:08, 6.48it/s]
PASS: 42%|████▏ | 39/92 [00:21<00:08, 6.37it/s]
PASS: 43%|████▎ | 40/92 [00:21<00:08, 6.31it/s]
PASS: 45%|████▍ | 41/92 [00:21<00:08, 6.11it/s]
PASS: 46%|████▌ | 42/92 [00:21<00:08, 6.00it/s]
PASS: 47%|████▋ | 43/92 [00:21<00:08, 5.93it/s]
PASS: 48%|████▊ | 44/92 [00:22<00:07, 6.12it/s]
PASS: 49%|████▉ | 45/92 [00:22<00:07, 6.02it/s]
PASS: 50%|█████ | 46/92 [00:22<00:07, 6.06it/s]
PASS: 51%|█████ | 47/92 [00:22<00:07, 6.03it/s]
PASS: 52%|█████▏ | 48/92 [00:22<00:07, 5.98it/s]
PASS: 53%|█████▎ | 49/92 [00:22<00:07, 6.02it/s]
PASS: 54%|█████▍ | 50/92 [00:23<00:06, 6.01it/s]
PASS: 55%|█████▌ | 51/92 [00:23<00:06, 5.90it/s]
PASS: 57%|█████▋ | 52/92 [00:23<00:06, 5.74it/s]
PASS: 58%|█████▊ | 53/92 [00:23<00:06, 5.65it/s]
PASS: 59%|█████▊ | 54/92 [00:23<00:06, 5.78it/s]
PASS: 60%|█████▉ | 55/92 [00:23<00:06, 5.88it/s]
PASS: 63%|██████▎ | 58/92 [00:24<00:03, 8.58it/s]
PASS: 64%|██████▍ | 59/92 [00:24<00:05, 6.55it/s]
PASS: 65%|██████▌ | 60/92 [00:24<00:05, 6.15it/s]
PASS: 67%|██████▋ | 62/92 [00:24<00:04, 6.72it/s]
PASS: 68%|██████▊ | 63/92 [00:25<00:04, 6.39it/s]
PASS: 70%|██████▉ | 64/92 [00:25<00:04, 6.13it/s]
PASS: 71%|███████ | 65/92 [00:25<00:04, 5.84it/s]
PASS: 72%|███████▏ | 66/92 [00:25<00:04, 5.65it/s]
PASS: 73%|███████▎ | 67/92 [00:25<00:04, 5.42it/s]
PASS: 74%|███████▍ | 68/92 [00:26<00:04, 5.35it/s]
PASS: 75%|███████▌ | 69/92 [00:26<00:04, 5.37it/s]
PASS: 76%|███████▌ | 70/92 [00:26<00:04, 4.46it/s]
PASS: 77%|███████▋ | 71/92 [00:26<00:04, 4.45it/s]
PASS: 78%|███████▊ | 72/92 [00:26<00:04, 4.71it/s]
PASS: 80%|████████ | 74/92 [00:27<00:02, 6.09it/s]
PASS: 82%|████████▏ | 75/92 [00:27<00:02, 5.93it/s]
PASS: 84%|████████▎ | 77/92 [00:27<00:02, 7.07it/s]
PASS: 85%|████████▍ | 78/92 [00:27<00:02, 6.52it/s]
PASS: 86%|████████▌ | 79/92 [00:27<00:02, 5.91it/s]
PASS: 87%|████████▋ | 80/92 [00:28<00:02, 5.71it/s]
PASS: 88%|████████▊ | 81/92 [00:28<00:01, 5.53it/s]
PASS: 89%|████████▉ | 82/92 [00:28<00:01, 5.46it/s]
PASS: 90%|█████████ | 83/92 [00:28<00:01, 5.36it/s]
PASS: 91%|█████████▏| 84/92 [00:34<00:15, 1.92s/it]

>>>> EXECUTING NEURAL ART COMPILER

PASS: 91%|█████████▏| 84/92 [00:34<00:15, 1.92s/it]

D:/stm32edgeai/stedgeai/2.1/Utilities/windows/atonn.exe -i "D:/stm32aibushu/stm32ai-modelzoo-services/object_detection/src/experiments_outputs/2025_05_16_11_30_18/ssd_mobilenet_v2_fpnlite_035_192_int8_OE_3_2_0.onnx" --json-quant-file "D:/stm32aibushu/stm32ai-modelzoo-services/object_detection/src/experiments_outputs/2025_05_16_11_30_18/ssd_mobilenet_v2_fpnlite_035_192_int8_OE_3_2_0_Q.json" -g "network.c" --load-mdesc "D:/stm32edgeai/stedgeai/2.1/Utilities/configs/stm32n6.mdesc" --load-mpool "D:/stm32aibushu/stm32ai-modelzoo-services/application_code/object_detection/STM32N6/Model/my_mpools/stm32n6-app2.mpool" --save-mpool-file "D:/stm32aibushu/stm32ai-modelzoo-services/object_detection/src/experiments_outputs/2025_05_16_11_30_18/neural_art__network/stm32n6-app2.mpool" --out-dir-prefix "D:/stm32aibushu/stm32ai-modelzoo-services/object_detection/src/experiments_outputs/2025_05_16_11_30_18/neural_art__network/" --all-buffers-info --no-hw-sw-parallelism --cache-maintenance --enable-virtual-mem-pools --native-float --optimization 3 --Os --Omax-ca-pipe 4 --Ocache-opt --enable-epoch-controller --output-info-file "c_info.json"

PASS: 91%|█████████▏| 84/92 [00:34<00:15, 1.92s/it]

<<<< DONE EXECUTING NEURAL ART COMPILER

PASS: 91%|█████████▏| 84/92 [00:37<00:15, 1.92s/it]
PASS: 92%|█████████▏| 85/92 [00:38<00:17, 2.55s/it]


LOAD ERROR: WindowsPath('D:/stm32aibushu/stm32ai-modelzoo-services/object_detection/src/experiments_outputs/2025_05_16_11_30_18/network.h') and WindowsPath('D:/stm32aibushu/stm32ai-modelzoo-services/object_detection/src/experiments_outputs/2025_05_16_11_30_18/network.h') are the same file
Error executing job with overrides: []
Traceback (most recent call last):
File "D:\anaconda\lib\site-packages\clearml\binding\hydra_bind.py", line 230, in _patched_task_function
return task_function(a_config, *a_args, **a_kwargs)
File "D:\stm32aibushu\stm32ai-modelzoo-services\object_detection\src\stm32ai_main.py", line 228, in main
process_mode(cfg)
File "D:\stm32aibushu\stm32ai-modelzoo-services\object_detection\src\stm32ai_main.py", line 102, in process_mode
deploy(cfg)
File "D:\stm32aibushu\stm32ai-modelzoo-services\object_detection\src\../deployment\deploy.py", line 111, in deploy
stm32ai_deploy_stm32n6(target=board, stlink_serial_number=stlink_serial_number, stm32ai_version=stm32ai_version, c_project_path=c_project_path,
File "D:\stm32aibushu\stm32ai-modelzoo-services\object_detection\src\../../common/deployment\common_deploy.py", line 469, in stm32ai_deploy_stm32n6
stmaic_local_call(session)
File "D:\stm32aibushu\stm32ai-modelzoo-services\object_detection\src\../../common/deployment\common_deploy.py", line 443, in stmaic_local_call
stmaic.compile(session=session, options=opt, target=session._board_config)
File "D:\stm32aibushu\stm32ai-modelzoo-services\object_detection\src\../../common\stm32ai_local\compile.py", line 208, in cmd_compile
raise Exception('Error during compilation')
Exception: Error during compilation

Set the environment variable HYDRA_FULL_ERROR=1 for a complete stack trace.

30 REPLIES 30
LQC_
Associate III

目前还没有,我使用食物分类和图像分类。

llcc
Associate II

好的好的,请问对于3.1.0版本你还是按照那个教程来配置文件以及运行过程吗,我看在那个教程的src文件夹下并没有stm32ai_main.py文件而是在src的上一级文件夹中有这个.py文件,谢谢谢谢帮助

LQC_
Associate III

没有,在src上一级执行的stm32ai_main.py,我有个疑问就是,执行完脚本后,下一步如何做。我按照他人教程按顺序烧录引导文件,模型文件,以及bin文件,没有效果。如果你知道的话,感谢分享!

llcc
Associate II

抱歉,我还没有运行到那一步,我还卡在这个界面上

LQC_
Associate III

好吧,我倒是没有使用object_detection,你可以试着换个例子,比如image_classification,看是否还有这个错误。

By:【新提醒】【STM32N6570-DK测评】3.快速实现AI目标检测应用 - 边缘AI - 电子工程世界-论坛

llcc
Associate II

好的好的,谢谢

LQC_
Associate III

我刚才试了一下object_detection,没有出现你刚才的错误。

这是我的user_config.yaml文件

general:
model_type: ssd_mobilenet_v2_fpnlite # 'st_ssd_mobilenet_v1', 'ssd_mobilenet_v2_fpnlite', 'tiny_yolo_v2', 'st_yolo_lc_v1', 'st_yolo_x', 'yolo_v8'
# path to a `.tflite` or `.onnx` file.
model_path: ../../stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_256/ssd_mobilenet_v2_fpnlite_100_256_int8.tflite

operation_mode: deployment

dataset:
name: coco_2017_80_classes
class_names: [person, bicycle, car, motorcycle, airplane, bus, train, truck, boat, traffic light, fire hydrant, stop sign, parking meter, bench, bird, cat, dog, horse, sheep, cow, elephant, bear, zebra, giraffe, backpack, umbrella, handbag, tie, suitcase, frisbee, skis, snowboard, sports ball, kite, baseball bat, baseball glove, skateboard, surfboard, tennis racket, bottle, wine glass, cup, fork, knife, spoon, bowl, banana, apple, sandwich, orange, broccoli, carrot, hot dog, pizza, donut, cake, chair, couch, potted plant, bed, dining table, toilet, tv, laptop, mouse, remote, keyboard, cell phone, microwave, oven, toaster, sink, refrigerator, book, clock, vase, scissors, teddy bear, hair drier, toothbrush]

preprocessing:
resizing:
interpolation: bilinear
aspect_ratio: crop
color_mode: rgb # rgb, bgr

postprocessing:
confidence_thresh: 0.6
NMS_thresh: 0.5
IoU_eval_thresh: 0.4
yolo_anchors: # Only applicable for YoloV2
max_detection_boxes: 10

tools:
stedgeai:
version: 10.1.0
optimization: balanced
on_cloud: False # Not Available For STM32N6
path_to_stedgeai: D:/16_STEdgeAI/2.1/Utilities/windows/stedgeai.exe
path_to_cubeIDE: D:/15_STM32CubeIDE_1.18.0/stm32cubeide1.17/STM32CubeIDE_1.17.0/STM32CubeIDE/stm32cubeide.exe

deployment:
c_project_path: ../application_code/object_detection/STM32N6/
IDE: GCC
verbosity: 1
hardware_setup:
serie: STM32N6
board: STM32N6570-DK

hydra:
run:
dir: ./src/experiments_outputs/${now:%Y_%m_%d_%H_%M_%S}

mlflow:
uri: ./src/experiments_outputs/mlruns
LQC_
Associate III

你检查一下你的user_config.yaml文件,是否缺少name这个字段?

LQC__0-1747819881630.png

 

llcc
Associate II
general:
  model_type: ssd_mobilenet_v2_fpnlite # 'st_ssd_mobilenet_v1', 'ssd_mobilenet_v2_fpnlite', 'tiny_yolo_v2', 'st_yolo_lc_v1', 'st_yolo_x', 'yolo_v8'
  # path to a `.tflite` or `.onnx` file.
  model_path: D:/stm32aibushu/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_256/ssd_mobilenet_v2_fpnlite_100_256_int8.tflite



operation_mode: deployment

dataset:
  name: coco_2017_80_classes
  class_names: [person, bicycle, car, motorcycle, airplane, bus, train, truck, boat, traffic light, fire hydrant, stop sign, parking meter, bench, bird, cat, dog, horse, sheep, cow, elephant, bear, zebra, giraffe, backpack, umbrella, handbag, tie, suitcase, frisbee, skis, snowboard, sports ball, kite, baseball bat, baseball glove, skateboard, surfboard, tennis racket, bottle, wine glass, cup, fork, knife, spoon, bowl, banana, apple, sandwich, orange, broccoli, carrot, hot dog, pizza, donut, cake, chair, couch, potted plant, bed, dining table, toilet, tv, laptop, mouse, remote, keyboard, cell phone, microwave, oven, toaster, sink, refrigerator, book, clock, vase, scissors, teddy bear, hair drier, toothbrush]

preprocessing:
  resizing:
    interpolation: bilinear
    aspect_ratio: crop
  color_mode: rgb # rgb, bgr

postprocessing:
  confidence_thresh: 0.6
  NMS_thresh: 0.5
  IoU_eval_thresh: 0.4
  yolo_anchors: # Only applicable for YoloV2
  max_detection_boxes: 10

tools:
  stedgeai:
    version: 10.1.0
    optimization: balanced
    on_cloud: False # Not Available For STM32N6
    path_to_stedgeai: D:/stm32edgeai/stedgeai/2.1/Utilities/windows/stedgeai.exe
  path_to_cubeIDE: D:/Stm32Cubbeide/STM32CubeIDE_1.16.0/STM32CubeIDE/stm32cubeide.exe

deployment:
  c_project_path: ../application_code/object_detection/STM32N6/
  IDE: GCC
  verbosity: 1
  hardware_setup:
    serie: STM32N6
    board: STM32N6570-DK

hydra:
  run:
    dir: ./src/experiments_outputs/${now:%Y_%m_%d_%H_%M_%S}

mlflow:
  uri: ./src/experiments_outputs/mlruns

并不缺少呀,这是我的"D:\stm32aibushu\stm32ai-modelzoo-services-3.1.0\object_detection\src\config_file_examples\my_deployment_n6_ssd_mobilenet_v2_fpnlite_config.yaml"文件

llcc
Associate II

它也并没有报错,只是一直停留在那个步骤,没有进一步的输出