2025-03-06 12:58 AM
Starting AI validation on target with random data...
C:/Users/allamjayaprakash/STM32Cube/Repository/Packs/STMicroelectronics/X-CUBE-AI/9.1.0/Utilities/windows/stedgeai.exe validate --target stm32l4 --name network -m C:/Users/allamjayaprakash/Dropbox/STM32/STM32L496G-DISCO/Updated_Model.h5 --compression lossless --verbosity 1 --allocate-inputs --allocate-outputs --memory-pool C:\Users\ALLAMJ~1\AppData\Local\Temp\mxAI_workspace70879369566600013930323030594161238\mempools.json --workspace C:/Users/ALLAMJ~1/AppData/Local/Temp/mxAI_workspace70879369566600013930323030594161238 --output C:/Users/allamjayaprakash/.stm32cubemx/network_output --mode target --desc serial:COM1:115200 --classifier
ST Edge AI Core v1.0.0-19894
Setting validation data...
generating random data, size=10, seed=42, range=(0, 1)
I[1]: (10, 128, 1, 1)/float32, min/max=[0.005, 1.000], mean/std=[0.498, 0.294], input_1
No output/reference samples are provided
Creating c (debug) info json file C:\Users\ALLAMJ~1\AppData\Local\Temp\mxAI_workspace70879369566600013930323030594161238\network_c_info.json
Exec/report summary (validate)
------------------------------------------------------------------------------------------------------------------------------
model file : C:\Users\allamjayaprakash\Dropbox\STM32\STM32L496G-DISCO\Updated_Model.h5
type : keras
c_name : network
compression : lossless
options : allocate-inputs, allocate-outputs, multi-heaps
optimization : balanced
target/series : stm32l4
memory pool : C:\Users\ALLAMJ~1\AppData\Local\Temp\mxAI_workspace70879369566600013930323030594161238\mempools.json
workspace dir : C:\Users\ALLAMJ~1\AppData\Local\Temp\mxAI_workspace70879369566600013930323030594161238
output dir : C:\Users\allamjayaprakash\.stm32cubemx\network_output
model_fmt : float
model_name : Updated_Model
model_hash : 0xf2ee7bd09a567da89f5684d36b016138
params # : 75,237 items (293.89 KiB)
------------------------------------------------------------------------------------------------------------------------------
input 1/1 : 'input_1', f32(1x128x1), 512 Bytes, activations
output 1/1 : 'dense', f32(1x5), 20 Bytes, activations
macc : 8,753,072
weights (ro) : 302,484 B (295.39 KiB) (1 segment) / +1,536(+0.5%) vs float model
activations (rw) : 9,856 B (9.62 KiB) (1 segment) *
ram (total) : 9,856 B (9.62 KiB) = 9,856 + 0 + 0
------------------------------------------------------------------------------------------------------------------------------
(*) 'input'/'output' buffers can be used from the activations buffer
Memory-pools summary (activations/ domain)
--------------- -------- -------------------------- ---------
name id used buffer#
--------------- -------- -------------------------- ---------
POOL_0_RAM 0 9.62 KiB (4.1%) 12
POOL_1_RAM2 unused - 0
weights_array 2 295.39 KiB (30248400.0%) 10
--------------- -------- -------------------------- ---------
Warning: ['POOL_1_RAM2'] memory pool is not used
Running the Keras model...
Running the STM AI c-model (AI RUNNER)...(name=network, mode=TARGET)
INTERNAL ERROR: E801(HwIOError): Invalid firmware - COM1:115200
2025-03-06 7:54 AM
Hello @allamjayaprakash ,
When launching the validation on target make sure to use the right come port.
The baudrate can also be an issue. For the STM32N6 it needs to be 921600.
Then make sure to check the enable box, select a valid communication port and select the right Toolchain/ide
Have a goo day,
Julian