cancel
Showing results for 
Search instead for 
Did you mean: 

STM32H747I-DISCO QSPI Writes Only Work on Even Addresses

Sasa1234
Associate II

Hi everyone,

I’m working with the STM32H747I-DISCO board and its onboard QSPI flash (Micron MT25QL512ABB). I’m encountering a frustrating issue:

 Problem:

  • Writes to even addresses (e.g., 0x90000000, 0x90000002) work perfectly.

  • Writes to odd addresses (e.g., 0x90000001, 0x90000003) either fail silently or corrupt data.

What I’ve tried:

  1. Configured QSPI in 1-line and 4-line modes (with/without Memory-Mapped Mode).

  2. Ensured sector erasure (4KB) before writing.

  3. Used both PAGE PROGRAM (0x02) and QUAD PAGE PROGRAM (0x32) commands.

  4. Verified signals with an oscilloscope (no obvious timing issues).

  5. I am using this sample codes: https://github.com/STMicroelectronics/stm32-external-loader/tree/contrib/QSPI_Drivers/MT25QL512

Questions:

  1. Is this a hardware limitation of the QSPI flash or the STM32 controller?

  2. What’s the correct configuration to write single bytes to odd addresses?

  3. Should I force standard SPI (1-line) mode instead of Quad I/O?

  4. How to modify the below code:
/* USER CODE BEGIN Header */
/**
 ******************************************************************************
 * @file           : main.c
 * @brief          : Main program body
 ******************************************************************************
 * @attention
 *
 * Copyright (c) 2025 STMicroelectronics.
 * All rights reserved.
 *
 * This software is licensed under terms that can be found in the LICENSE file
 * in the root directory of this software component.
 * If no LICENSE file comes with this software, it is provided AS-IS.
 *
 ******************************************************************************
 */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "quadspi.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define SECTORS_COUNT 100


uint8_t writebuf[] = "Che bello ndar da Peepeee!!!";
uint8_t ReadBuf[100];


#ifndef HSEM_ID_0
#define HSEM_ID_0 (0U) /* HW semaphore 0*/
#endif

void TEST_QSPI();
void QSPI_Write_Byte(uint32_t address, uint8_t data);



/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
void Write_Byte_QSPI();
/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
#include <string.h>
//#define SECTORS_COUNT 100
/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */
/* USER CODE BEGIN Boot_Mode_Sequence_0 */
	//  int32_t timeout;
/* USER CODE END Boot_Mode_Sequence_0 */

  /* Enable I-Cache---------------------------------------------------------*/
  SCB_EnableICache();

  /* Enable D-Cache---------------------------------------------------------*/
  SCB_EnableDCache();

/* USER CODE BEGIN Boot_Mode_Sequence_1 */
	/* Wait until CPU2 boots and enters in stop mode or timeout*/
	//timeout = 0xFFFF;
	//while((__HAL_RCC_GET_FLAG(RCC_FLAG_D2CKRDY) != RESET) && (timeout-- > 0));
	//if ( timeout < 0 )
	//{
	//Error_Handler();
	// }
/* USER CODE END Boot_Mode_Sequence_1 */
  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();
/* USER CODE BEGIN Boot_Mode_Sequence_2 */
	/* When system initialization is finished, Cortex-M7 will release Cortex-M4 by means of
HSEM notification */
	/*HW semaphore Clock enable*/
	__HAL_RCC_HSEM_CLK_ENABLE();
	/*Take HSEM */
	//HAL_HSEM_FastTake(HSEM_ID_0);
	/*Release HSEM in order to notify the CPU2(CM4)*/
	//HAL_HSEM_Release(HSEM_ID_0,0);
	/* wait until CPU2 wakes up from stop mode */
	//timeout = 0xFFFF;
	//while((__HAL_RCC_GET_FLAG(RCC_FLAG_D2CKRDY) == RESET) && (timeout-- > 0));
	//if ( timeout < 0 )
	//{
	//Error_Handler();
	//}
/* USER CODE END Boot_Mode_Sequence_2 */

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_QUADSPI_Init();
  /* USER CODE BEGIN 2 */



	//TEST_QSPI();


	Write_Byte_QSPI();

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
	while (1)
	{
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
	}
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Supply configuration update enable
  */
  HAL_PWREx_ConfigSupply(PWR_DIRECT_SMPS_SUPPLY);

  /** Configure the main internal regulator output voltage
  */
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {}

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.HSIState = RCC_HSI_DIV1;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 2;
  RCC_OscInitStruct.PLL.PLLN = 32;
  RCC_OscInitStruct.PLL.PLLP = 2;
  RCC_OscInitStruct.PLL.PLLQ = 2;
  RCC_OscInitStruct.PLL.PLLR = 2;
  RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_3;
  RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOWIDE;
  RCC_OscInitStruct.PLL.PLLFRACN = 0;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2
                              |RCC_CLOCKTYPE_D3PCLK1|RCC_CLOCKTYPE_D1PCLK1;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB3CLKDivider = RCC_APB3_DIV2;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV2;
  RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV2;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
  HAL_RCC_MCOConfig(RCC_MCO1, RCC_MCO1SOURCE_HSI, RCC_MCODIV_1);
}

/* USER CODE BEGIN 4 */




void TEST_QSPI()
{




	uint8_t buffer_test[MEMORY_SECTOR_SIZE];
	uint32_t var = 0;

	CSP_QUADSPI_Init();

	for (var = 0; var < MEMORY_SECTOR_SIZE; var++) {
		buffer_test[var] = (var & 0xFF);
	}

	for (var = 0; var < SECTORS_COUNT; var++) {

		if (CSP_QSPI_EraseSector(var * MEMORY_SECTOR_SIZE,
				(var + 1) * MEMORY_SECTOR_SIZE - 1) != HAL_OK) {

			while (1)
				;  //breakpoint - error detected
		}

		if (CSP_QSPI_WriteMemory(buffer_test, var * MEMORY_SECTOR_SIZE, sizeof(buffer_test)) != HAL_OK) {

			while (1)
				;  //breakpoint - error detected
		}

	}

	if (CSP_QSPI_EnableMemoryMappedMode() != HAL_OK) {

		while (1)
			; //breakpoint - error detected
	}

	for (var = 0; var < SECTORS_COUNT; var++) {
		if (memcmp(buffer_test,
				(uint8_t*) (0x90000000 + var * MEMORY_SECTOR_SIZE),
				MEMORY_SECTOR_SIZE) != HAL_OK) {
			while (1)
				;  //breakpoint - error detected - otherwise QSPI works properly
		}
	}



}




void Write_Byte_QSPI() {
	int i = 0;

	if(CSP_QUADSPI_Init() != HAL_OK)
	{
		Error_Handler();
	}

	if(CSP_QSPI_Erase_Chip() !=HAL_OK)
	{

		Error_Handler();
	}




	if(CSP_QSPI_WriteMemory(writebuf,0, sizeof(writebuf))!=HAL_OK)
	{
		i = 1;

	}


	if(i ==1)

	{

		HAL_GPIO_WritePin(GPIOI, GPIO_PIN_13, GPIO_PIN_SET);

	}

}









/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
	/* User can add his own implementation to report the HAL error return state */
	__disable_irq();
	while (1)
	{
	}
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  *   file: pointer to the source file name
  *   line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
	/* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

Additional Context:

  • Board: STM32H747I-DISCO

  • Flash: Micron MT25QL512ABB (512Mbit, QSPI/OPI)

  • Toolchain: STM32CubeIDE 1.11.0 / HAL 1.11.0

Sasa1234_0-1743780051637.png

 

2 REPLIES 2

I think the External Loader is looking at a pair of memories, or dual die TL part.

The banks alternate odd/even bytes

In single part mode you'll only program one part, the even one

Tips, Buy me a coffee, or three.. PayPal Venmo
Up vote any posts that you find helpful, it shows what's working..

They use the DUAL FLASH mode, so a pair of MT25QL512 or dual die MT25TL01G, allows for an 8-bit interface, higher bandwidth, achieved by alternating bytes between both, ie sends one command and you write a page of 512 bytes, rather than the 256 bytes for a single memory. Same for reads of status registers, reading a pair of bytes and waiting when either is BUSY or JEDEC READ ID, where you'd now read 6-bytes instead of 3

 

https://github.com/STMicroelectronics/stm32h747i-disco-bsp/blob/c11e85749f760a7ee35d12ff7ee79646de75e6db/stm32h747i_discovery_qspi.c

The External Loader for the H747I-DISCO presumes the paired devices. You could access a singular device loader, then it would see the data as you read it. There should be a workable loader on my github repo to access just the one device.

 

PB2,PG6,PD11,PF9,PF7,PF6 (CUSTOM19) H747I-DISCO LOW BANK

https://github.com/cturvey/stm32extldr/tree/main/h7_mt25ql512a

https://github.com/cturvey/stm32extldr/blob/main/h7_mt25ql512a/CLIVEONE-MT25QL512_STM32H7XX-PB2-PG6-PD11-PF9-PF7-PF6.stldr

Tips, Buy me a coffee, or three.. PayPal Venmo
Up vote any posts that you find helpful, it shows what's working..