2025-07-29 12:00 AM
hi
I have validate on the STM32N6 board by onnx model in STM32MX,but i have two different output ,like this:
m_outputs_1: (10, 3)/float64, min/max=[-282.578064, 481.370483], mean/std=[-2.619613, 298.301398], output m_outputs_2: (10, 1)/float64, min/max=[0.000000, 0.000000], mean/std=[0.000000, 0.000000], node_139 c_outputs_1: (10, 1, 1, 3)/float32, min/max=[-4.547175, 5.813805], mean/std=[0.008044, 4.321293], output c_outputs_2: (10, 1, 1, 1)/float32, min/max=[0.000800, 0.000800], mean/std=[0.000800, 0.000000], node_139
the m_outputs_1 is error, and c_outputs_1 is correct,why? what can lead to this problem?
please help me ,thanks very much!!!
I have upload the report.txt and onnx model in the attach.
2025-07-29 1:10 AM
Hello @cxf,
Can you give me more context about what you have done exactly:
I did test with the Nucleo N6 and N6 DK board, with version 10.1.0 and 10.2.0 of X Cube AI.
I am using STM32CubeIDE and windows, but I never replicated your issue.
Here is an example of report I get, which is correct:
Saving validation data...
output directory: C:\ST\STEdgeAI\2.2\scripts\N6_scripts\st_ai_output
creating C:\ST\STEdgeAI\2.2\scripts\N6_scripts\st_ai_output\network_val_io.npz
m_outputs_1: (10, 3)/float64, min/max=[-282.578064, 481.370483], mean/std=[-2.619613, 298.301398], output
m_outputs_2: (10, 1)/float64, min/max=[0.000000, 0.000000], mean/std=[0.000000, 0.000000], node_139
c_outputs_1: (10, 1, 1, 3)/float32, min/max=[-282.578094, 481.370422], mean/std=[-2.619609, 298.301392], output
c_outputs_2: (10, 1, 1, 1)/float32, min/max=[0.000000, 0.000000], mean/std=[0.000000, 0.000000], node_139
Computing the metrics...
Cross accuracy report #1 (reference vs C-model)
----------------------------------------------------------------------------------------------------
notes: - data type is different: r/float64 instead p/float32
- ACC metric is not computed ("--classifier" option can be used to force it)
- the output of the reference model is used as ground truth/reference value
- 10 samples (3 items per sample)
acc=n.a. rmse=0.000060476 mae=0.000043488 l2r=0.000000203 mean=-0.000004 std=0.000061 nse=1.000000 cos=1.000000
Cross accuracy report #2 (reference vs C-model)
----------------------------------------------------------------------------------------------------
notes: - data type is different: r/float64 instead p/float32
- the output of the reference model is used as ground truth/reference value
- 10 samples (1 items per sample)
acc=n.a. rmse=0.000000000 mae=0.000000000 l2r=0.000000000 mean=0.000000 std=0.000000 nse=1.000000 cos=1.000000
Evaluation report (summary)
---------------------------------------------------------------------------------------------------------------------------------------------------
Output acc rmse mae l2r mean std nse cos tensor
---------------------------------------------------------------------------------------------------------------------------------------------------
X-cross #1 n.a. 0.000060476 0.000043488 0.000000203 -0.000004 0.000061 1.000000 1.000000 'output', 10 x f32(1x3), m_id=[110]
X-cross #2 n.a. 0.000000000 0.000000000 0.000000000 0.000000 0.000000 1.000000 1.000000 'node_139', 10 x f32(1x1), m_id=[112]
---------------------------------------------------------------------------------------------------------------------------------------------------
Have a good day,
Julian