cancel
Showing results for 
Search instead for 
Did you mean: 

Strange ADC scan mode with DMA behavior in custom hardware (L476RG)

LucasRosa
Associate III

Hello everyone,

I am facing a strange behavior when using ADC scan + DMA with an STM32L476RG.
To debug the issue, I created a very simple test code: the MCU performs a scan measurement on 4 channels of ADC1 (PC0, PC1, PC2, and PC3) using DMA.

Test setup:

  • ADC1 configured in scan mode

  • DMA transfer to conversions[4] buffer

  • Channels: PC0, PC1, PC2, PC3

Observation:

  • On a Nucleo-L476RG (MB1136 C-04), the code works as expected. Each channel returns a value of around ~550 in all positions of conversions[4].

  • On my custom hardware, running the exact same firmware, I see a very different behavior:

    • conversions[0] shows a value around ~2200

    • conversions[1], [2], and [3] remain stuck at 0

  • This issue happens only on my custom board.

I have already checked the supply pins:

  • VDD, VDDA, VREF+ → all are properly connected and supplied with ~3.3V

  • GND and VSSA are also properly tied

I will attach the relevant section of my schematic showing the MCU connections.

Has anyone faced a similar issue or has suggestions on what could be wrong in my hardware setup?

Thanks in advance for any help!

 

Main code:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2025 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "adc.h"
#include "dma.h"
#include "tim.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */
static uint16_t conversions[4] = {0};
/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{

  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_TIM3_Init();
  MX_ADC1_Init();
  /* USER CODE BEGIN 2 */

  HAL_ADC_Start_DMA(&hadc1, (uint32_t *)conversions, 4);

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLM = 1;
  RCC_OscInitStruct.PLL.PLLN = 10;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7;
  RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
  RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK)
  {
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @PAram  file: pointer to the source file name
  * @PAram  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

 

ADC code:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file    adc.c
  * @brief   This file provides code for the configuration
  *          of the ADC instances.
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2025 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "adc.h"

/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;

/* ADC1 init function */
void MX_ADC1_Init(void)
{

  /* USER CODE BEGIN ADC1_Init 0 */

  /* USER CODE END ADC1_Init 0 */

  ADC_MultiModeTypeDef multimode = {0};
  ADC_ChannelConfTypeDef sConfig = {0};

  /* USER CODE BEGIN ADC1_Init 1 */

  /* USER CODE END ADC1_Init 1 */

  /** Common config
  */
  hadc1.Instance = ADC1;
  hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
  hadc1.Init.Resolution = ADC_RESOLUTION_12B;
  hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE;
  hadc1.Init.EOCSelection = ADC_EOC_SEQ_CONV;
  hadc1.Init.LowPowerAutoWait = DISABLE;
  hadc1.Init.ContinuousConvMode = ENABLE;
  hadc1.Init.NbrOfConversion = 4;
  hadc1.Init.DiscontinuousConvMode = DISABLE;
  hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  hadc1.Init.DMAContinuousRequests = ENABLE;
  hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED;
  hadc1.Init.OversamplingMode = DISABLE;
  if (HAL_ADC_Init(&hadc1) != HAL_OK)
  {
    Error_Handler();
  }

  /** Configure the ADC multi-mode
  */
  multimode.Mode = ADC_MODE_INDEPENDENT;
  if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK)
  {
    Error_Handler();
  }

  /** Configure Regular Channel
  */
  sConfig.Channel = ADC_CHANNEL_1;
  sConfig.Rank = ADC_REGULAR_RANK_1;
  sConfig.SamplingTime = ADC_SAMPLETIME_47CYCLES_5;
  sConfig.SingleDiff = ADC_SINGLE_ENDED;
  sConfig.OffsetNumber = ADC_OFFSET_NONE;
  sConfig.Offset = 0;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }

  /** Configure Regular Channel
  */
  sConfig.Channel = ADC_CHANNEL_2;
  sConfig.Rank = ADC_REGULAR_RANK_2;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }

  /** Configure Regular Channel
  */
  sConfig.Channel = ADC_CHANNEL_3;
  sConfig.Rank = ADC_REGULAR_RANK_3;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }

  /** Configure Regular Channel
  */
  sConfig.Channel = ADC_CHANNEL_4;
  sConfig.Rank = ADC_REGULAR_RANK_4;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN ADC1_Init 2 */

  /* USER CODE END ADC1_Init 2 */

}

void HAL_ADC_MspInit(ADC_HandleTypeDef* adcHandle)
{

  GPIO_InitTypeDef GPIO_InitStruct = {0};
  RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
  if(adcHandle->Instance==ADC1)
  {
  /* USER CODE BEGIN ADC1_MspInit 0 */
//////
  /* USER CODE END ADC1_MspInit 0 */

  /** Initializes the peripherals clock
  */
    PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
    PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_PLLSAI1;
    PeriphClkInit.PLLSAI1.PLLSAI1Source = RCC_PLLSOURCE_HSI;
    PeriphClkInit.PLLSAI1.PLLSAI1M = 1;
    PeriphClkInit.PLLSAI1.PLLSAI1N = 8;
    PeriphClkInit.PLLSAI1.PLLSAI1P = RCC_PLLP_DIV7;
    PeriphClkInit.PLLSAI1.PLLSAI1Q = RCC_PLLQ_DIV2;
    PeriphClkInit.PLLSAI1.PLLSAI1R = RCC_PLLR_DIV2;
    PeriphClkInit.PLLSAI1.PLLSAI1ClockOut = RCC_PLLSAI1_ADC1CLK;
    if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
    {
      Error_Handler();
    }

    /* ADC1 clock enable */
    __HAL_RCC_ADC_CLK_ENABLE();

    __HAL_RCC_GPIOC_CLK_ENABLE();
    /**ADC1 GPIO Configuration
    PC0     ------> ADC1_IN1
    PC1     ------> ADC1_IN2
    PC2     ------> ADC1_IN3
    PC3     ------> ADC1_IN4
    */
    GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3;
    GPIO_InitStruct.Mode = GPIO_MODE_ANALOG_ADC_CONTROL;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

    /* ADC1 DMA Init */
    /* ADC1 Init */
    hdma_adc1.Instance = DMA1_Channel1;
    hdma_adc1.Init.Request = DMA_REQUEST_0;
    hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY;
    hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE;
    hdma_adc1.Init.MemInc = DMA_MINC_ENABLE;
    hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
    hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
    hdma_adc1.Init.Mode = DMA_CIRCULAR;
    hdma_adc1.Init.Priority = DMA_PRIORITY_LOW;
    if (HAL_DMA_Init(&hdma_adc1) != HAL_OK)
    {
      Error_Handler();
    }

    __HAL_LINKDMA(adcHandle,DMA_Handle,hdma_adc1);

  /* USER CODE BEGIN ADC1_MspInit 1 */
//////
  /* USER CODE END ADC1_MspInit 1 */
  }
}

void HAL_ADC_MspDeInit(ADC_HandleTypeDef* adcHandle)
{

  if(adcHandle->Instance==ADC1)
  {
  /* USER CODE BEGIN ADC1_MspDeInit 0 */
//////
  /* USER CODE END ADC1_MspDeInit 0 */
    /* Peripheral clock disable */
    __HAL_RCC_ADC_CLK_DISABLE();

    /**ADC1 GPIO Configuration
    PC0     ------> ADC1_IN1
    PC1     ------> ADC1_IN2
    PC2     ------> ADC1_IN3
    PC3     ------> ADC1_IN4
    */
    HAL_GPIO_DeInit(GPIOC, GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);

    /* ADC1 DMA DeInit */
    HAL_DMA_DeInit(adcHandle->DMA_Handle);
  /* USER CODE BEGIN ADC1_MspDeInit 1 */
//////
  /* USER CODE END ADC1_MspDeInit 1 */
  }
}

/* USER CODE BEGIN 1 */

/* USER CODE END 1 */

 

 

 

 

 

2 REPLIES 2
TDK
Super User

Mark the conversions array as volatile and initialize it to non-zero values so you know when it gets written.

If it's the same chip, code will execute the same. Look for a different explanation.

If you feel a post has answered your question, please click "Accept as Solution".

I declared it as follows:

volatile uint16_t conversions[4] = {10, 10, 10, 10};

The behavior I see is that conversions[0] gets a value around ~2000, while [1], [2] and [3] goes to zero.

I’m starting to suspect some kind of hardware issue. I uploaded a .png of the microcontroller section of my schematic. Could you please check if there is any problem there?