
31/07/2018 164782[PostContent].html

file:///C:/Work/STM/data/1-Faical/164782[PostContent].html 1/3

Processor: STM32L021D4

IDE: Atollic TrueStudio

I am cycling the PWM frequency from 3.2KHz to 3.7KHz in 15mS steps and then repeating but I am hearing
short pauses from the piezo circuit connected to the output. I have trapped the pwm output on the logic
analyzer which shows periods that the pwm is not functional. The error always happens after updating the
frequency but it is random. The times that the PWM stops is almost always 32mS in length. When the PWM
output stops, the pin?s output state is dependent on the values in the OC3M bits of the TIM2->CCMR2
register which leads me to this excerpt from the reference manual?

110: PWM mode 1 - In upcounting, channel 1 is active as long as TIMx_CNT<TIMx_CCR1
 else inactive. In downcounting, channel 1 is inactive (OC1REF=?0) as long as

 TIMx_CNT>TIMx_CCR1 else active (OC1REF=1).
 111: PWM mode 2 - In upcounting, channel 1 is inactive as long as TIMx_CNT<TIMx_CCR1

 else active. In downcounting, channel 1 is active as long as TIMx_CNT>TIMx_CCR1 else
 inactive.

As a test, I cleared the TIM2 counter register when updating the ARR register and the gaps went away but at a
cost of adding other sound issues because I am interrupting the pwm signal, similar to stopping and starting the
timer module.

I tried a constant output and it is good so it is definitely related to switch frequencies. The source code has
been condensed to a couple sample functions to eliminate other interference. In the capture below, the DBG
line is toggled every 15mS when changing frequencies which shows the program is running as normal.

I am loading new values into the ARR and CCR3 registers which contains a shadow copy that is not updated
until the next PWM cycle. I was originally trying to turn off the clock, update the values, and then enable the
clock but this causes interruptions of the PWM waveform which creates a poor tone on the piezo.

Code

void piezo_test(void)

{

 RCC->APB1ENR |= RCC_APB1ENR_TIM2EN;

 uint32_t i = 0;

 const uint32_t freq_list2[][2] = // Precalculate the timer values to rule out any math errors.

 {

 // Freq DC @50%

 {625, 312 }, // 2Mhz / 3.2Khz

 {620, 310 },

 {615, 307 },

 {610, 305 },

 {606, 303 },

31/07/2018 164782[PostContent].html

file:///C:/Work/STM/data/1-Faical/164782[PostContent].html 2/3

 {601, 300 },

 {597, 298 },

 {592, 296 },

 {588, 294 },

 {583, 291 },

 {579, 289 },

 {575, 287 },

 {571, 285 },

 {567, 283 },

 {563, 281 },

 {559, 279 },

 {555, 277 },

 {551, 275 },

 {547, 273 },

 {544, 272 } // 2MHz @ 3.675 KHz

 };

 enable_piezo_output(); // Set IO for alt function on A10, TIM2_CH3

 startPWM_Test(freq_list2[0][0], freq_list2[0][1]); // kick off first frequency

 while(1)

 {

 if (scheduler_timeSince(tone_timer_ms) >= 15) // wait 15mS

 {

 tone_timer_ms = scheduler_getTick(); // update timer

 i = (i + 1) % 16; // Increment freq index

 startPWM_Test(freq_list2[i][0], freq_list2[i][1]); // Setup new freq and duty cycle

 dbg_on(1); // Toggle debug line to show when freq update
loaded

 dbg_off(1); //

 }

 }

}

31/07/2018 164782[PostContent].html

file:///C:/Work/STM/data/1-Faical/164782[PostContent].html 3/3

void startPWM_Test(uint32_t clk, uint32_t dc)

{

 TIM2->ARR = clk; // Load ARR with the rollover value

 TIM2->CCR3 = dc; // Set to half of ARR for 50% duty cycle

 //TIM2->CNT = 0;

 if((TIM2->CR1 & TIM_CR1_CEN) == 0) // first pass turn on timer and cfg,
otherwise just load CCR2 and ARR to shadow registers

 {

 TIM2->CCER &= ~TIM_CCER_CC3E;

 TIM2->PSC = 0; // Set prescaler to 0, so APBCLK/1 i.e 1MHz

 TIM2->CCMR1 = 0; // No input capture

 TIM2->CCMR2 = TIM_CCMR2_OC3M_2 | TIM_CCMR2_OC3M_1 | TIM_CCMR2_OC3M_0
|TIM_CCMR2_OC3PE;// Set OC3 to PWM

 TIM2->CCER |= TIM_CCER_CC3E; // Enable the output on OC3
(CC3E = 1)e

 TIM2->CR1 |= TIM_CR1_CEN; // Enable counter (CEN = 1)

 }

}

