
Technical Support

Overview (/support/)

Search (/home/searchhelp)

Contact (/support/contact.asp)

Assistance Request (/support/request.asp)

Feedback (/support/feedback.asp)

Support Resources
Support Knowledgebase (/support/knowledgebase.asp)

Article Index (/support/topics.asp)

Top 10 Articles (/support/topten.asp)

Product Manuals (/support/man/)

Application Notes (/appnotes/)

Downloads (/download/)

Product Updates (/update/)

Discussion Forum (/forum/)

Books (/books/)

Product Information
Software & Hardware Products (/product/)

Arm Development Tools (/arm/)

C166 Development Tools (/c166/)

C51 Development Tools (/c51/)

C251 Development Tools (/c251/)

Debug Adapters (/ulink/)

Evaluation Boards (/boards2/)

Product Brochures (/product/brochures.asp)

Newsletters (/product/newsletters.asp)

Home (/) / Technical Support

ARM: Cortex-M3/M4 Interrupts Happening Twice?

Information in this knowledgebase article applies to:

Cortex-M3 and Cortex-M4 Devices

SYMPTOM
Cortex-M3 and Cortex-M4 interrupts appear to be triggering twice.

CAUSE
This may happen with devices:

That add an external, system-level write buffer in their Cortex-M3 or Cortex-M4 design, AND

The ISR code exits immediately after a write to clear the interrupt.

In this situation, the write to clear the interrupt may not complete before interrupt triggers a second time.

REASON
For the Cortex-M3 and Cortex-M4 cores, writes (STR, STMIA or PUSH) to memory are internally buffered. The
Harvard architecture allows the MCU to fetch and execute instructions without waiting for data writes to memory
to complete. The Cortex-M cores are aware of the internal buffer and prevent subsequent interrupts until the
internal buffer empties and the write completes.

Sometimes vendors incorporate an additional external, system-level write buffer in their Cortex-M3 and
Cortex-M4 designs for better performance. But unfortunately, the core is not aware of this external write buffer
and cannot access it's status. For these externally-buffered devices, if an ISR exits immediately after clearing
the interrupt register, a second interrupt could trigger again before the write to clear the interrupt completes.

For example, this ISR exits immediately after clearing the timer interrupt. Without the external buffer
implementation, this code would work as expected. However, on a device with an external, system-level write
buffer, this code could cause this "double IRQ" condition:

void Timer_IRQHandler (void) {
 Timeout_counter++; /* Increment timeout counter */
 PortD->PTOR |= 1<<0; /* Toggle output on port D0 */
 Timer->MSR |= TIMER_MASK; /* Clear timer interrupt */
}

RESOLUTION
Using the DSB instruction or __dsb(0) intrinsic before exiting will force a wait for the internal write buffer to
empty, but that instruction cannot test the status of an optional system-level write buffer if there happens to be
one. To make sure the peripheral interrupt register gets set properly, just perform another memory write before
exiting the ISR.

Given the example above, one way to do this is by incrementing the timeout counter AFTER clearing the
interrupt:

void Timer_IRQHandler (void) {
 PortD->PTOR |= 1<<0; /* Toggle output on port D0 */
 Timer->MSR |= TIMER_MASK; /* Clear timer interrupt */
 Timeout_counter++; /* Count timeout & insure IRQ clear */
}

But any type of memory write will accomplish this. The Timeout_counter++ works because it performs a
read-modify-write to memory. If you can't move an instruction like in the above example, just add harmless code
that performs a read-write like this:

void Timer_IRQHandler (void) {
 Timeout_counter++; /* Increment timeout counter */
 PortD->PTOR |= 1<<0; /* Toggle output on port D0 */
 Timer->MSR |= TIMER_MASK; /* Clear timer interrupt */
 PortD->PTOR = PortD->PTOR; /* Insure IRQ clear */
}

Last Reviewed: Wednesday, June 14, 2017

Did this article provide the
answer you needed?







Submit

