/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2022 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "stdio.h" #include "string.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ I2C_HandleTypeDef hi2c1; UART_HandleTypeDef huart1; /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_I2C1_Init(void); static void MX_USART1_UART_Init(void); /* USER CODE BEGIN PFP */ #ifdef __GNUC__ #define PUTCHAR_PROTOTYPE int __io_putchar(int ch) #else #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f) #endif PUTCHAR_PROTOTYPE { HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, HAL_MAX_DELAY); return ch; } /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ uint16_t DevAddress = 0x61<< 1; /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_I2C1_Init(); MX_USART1_UART_Init(); /* USER CODE BEGIN 2 */ char MSG[] = " \n\r hello from ENV4 sensor \n\r"; printf("%s \n",MSG); if (HAL_OK == HAL_I2C_IsDeviceReady(&hi2c1, DevAddress, 200, 200)) { printf("I2C device Success\n"); } else { printf("I2C Failure\n"); } HAL_Delay(1000); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ //uint16_t MemAddress = 0xD100; uint8_t env_var[10]; uint16_t temp[2]; uint8_t read_buf[20]; uint8_t SCD30_cnt_measurement[8]; //char print_msg[200] = ""; uint16_t ret ; //uint16_t command = 0x03; //uint16_t config; //uint16_t SpecAddress; /* USER CODE BEGIN 3 */ // I2C check for sensiron sensor for CO2 ,temp and humidity // stop periodic measurement //SCD30_cnt_measurement[0]=0xC2; SCD30_cnt_measurement[0]=0x01; SCD30_cnt_measurement[1]=0x04; //if(HAL_OK== HAL_I2C_Master_Transmit(&hi2c1, DevAddress, (uint8_t *)SCD30_cnt_measurement, 2, HAL_MAX_DELAY)) if(HAL_OK == HAL_I2C_Mem_Write(&hi2c1, DevAddress,(uint8_t *)SCD30_cnt_measurement, 0,env_var,4, HAL_MAX_DELAY)) { printf("\n\r I2C Stop success\n\r"); } else{ printf("\n\r I2C Stop Failure\n\r"); } HAL_Delay(1000); // soft reset //SCD30_cnt_measurement[0]=0xC2; SCD30_cnt_measurement[0]=0xD3; SCD30_cnt_measurement[1]=0x04; //if(HAL_OK== HAL_I2C_Master_Transmit(&hi2c1, DevAddress, (uint8_t *)SCD30_cnt_measurement, 2, HAL_MAX_DELAY)) if(HAL_OK== HAL_I2C_Mem_Write(&hi2c1, DevAddress,(uint8_t *) SCD30_cnt_measurement, 0,env_var,4, HAL_MAX_DELAY)) { printf("I2C reset success \n\r"); } else { printf("I2C reset Failure\n\r"); } HAL_Delay(2000); // reading firmware version //SCD30_cnt_measurement[0]=0xC2; SCD30_cnt_measurement[0]=0xD1; SCD30_cnt_measurement[1]=0x00; //ret = HAL_I2C_Master_Transmit(&hi2c1, DevAddress, (uint8_t *)SCD30_cnt_measurement, 4, HAL_MAX_DELAY); ret = HAL_I2C_Mem_Write(&hi2c1, DevAddress,(uint8_t *)SCD30_cnt_measurement, 0,env_var,4, HAL_MAX_DELAY); if ( ret != HAL_OK ) { printf("I2C FW write failure\n\r"); } else { printf("I2C FW write success\n\r"); } HAL_Delay(100); temp[0]= 0xD1; //ret = HAL_I2C_Mem_Read(&hi2c1, DevAddress, (uint16_t *)SCD30_cnt_measurement, 0,env_var,4, HAL_MAX_DELAY); ret = HAL_I2C_Master_Receive(&hi2c1, DevAddress, env_var, 4, HAL_MAX_DELAY); if ( ret != HAL_OK ) { printf("I2C FW read failure\n\r"); } else { printf("I2C FW read success\n\r"); printf("%x , %x \n",env_var[0],env_var[1]); } #if 0 // get ready status SCD30_cnt_measurement[0]=0x02; SCD30_cnt_measurement[1]=0x02; //ret = HAL_I2C_Master_Transmit(&hi2c1, DevAddress, SCD30_cnt_measurement, 2, HAL_MAX_DELAY); ret = HAL_I2C_Mem_Write(&hi2c1, DevAddress, SCD30_cnt_measurement, 0,env_var,4, HAL_MAX_DELAY); if ( ret != HAL_OK ) { printf("\n\r I2C get ready failure\n\r"); } else { printf("I2C get ready success\n\r"); } HAL_Delay(1000); // set measurement interval SCD30_cnt_measurement[0]=0x46; SCD30_cnt_measurement[1]=0x00; //ret = HAL_I2C_Master_Transmit(&hi2c1, DevAddress, SCD30_cnt_measurement, 2, HAL_MAX_DELAY); ret = HAL_I2C_Mem_Write(&hi2c1, DevAddress, SCD30_cnt_measurement, 0,env_var,4, HAL_MAX_DELAY); if ( ret != HAL_OK ) { printf("\n\r I2C set measure failure\n\r"); } else { printf("I2C set measure success\n\r"); } HAL_Delay(1000); // start periodic measurement //SCD30_cnt_measurement[0]=0xC2; SCD30_cnt_measurement[0]=0x00; SCD30_cnt_measurement[1]=0x10; //ret = HAL_I2C_Master_Transmit(&hi2c1, DevAddress, SCD30_cnt_measurement, 2, HAL_MAX_DELAY); ret = HAL_I2C_Mem_Write(&hi2c1, DevAddress, SCD30_cnt_measurement, 0,env_var,4, HAL_MAX_DELAY); if ( ret != HAL_OK ) { printf("\n\r I2C periodic measure Success\n\r"); } else { printf("I2C periodic measure failure\n"); } HAL_Delay(1000); // get ready status read //SCD30_cnt_measurement[0]=0x02; //SCD30_cnt_measurement[1]=0x02; //ret = HAL_I2C_Mem_Read(&hi2c1, DevAddress, SCD30_cnt_measurement, 4,env_var,4, HAL_MAX_DELAY); ret = HAL_I2C_Master_Receive(&hi2c1, DevAddress, SCD30_cnt_measurement, 4, HAL_MAX_DELAY); if ( ret != HAL_OK ) { printf("\n\r I2C ready read failure\n\r"); } else { printf("I2C ready read success\n\r"); printf("%x ,%x ",env_var[0],env_var[1]); } temp[1]= 0x00; #endif #if 0 //read Co2 ,temp and humidity measurement SCD30_cnt_measurement[0]=0x03; SCD30_cnt_measurement[1]=0x00; ret = HAL_I2C_Mem_Read(&hi2c1, DevAddress, &SCD30_cnt_measurement, 4,read_buf,4, HAL_MAX_DELAY); //ret = HAL_I2C_Master_Receive(&hi2c1, DevAddress, &env_var, 4, HAL_MAX_DELAY); if ( ret != HAL_OK ) { printf("\n\r I2C final measure failure\n\r"); } else { printf("\n\r I2C ready read Success\n\r"); printf("%x ,%x ,%x ,%x ",read_buf[0],read_buf[1],read_buf[2],read_buf[3]); } HAL_Delay(1000); // stop periodic measurement SCD30_cnt_measurement[0]=0x01; SCD30_cnt_measurement[1]=0x04; ret = HAL_I2C_Master_Transmit(&hi2c1, DevAddress, SCD30_cnt_measurement, 2, HAL_MAX_DELAY); //ret = HAL_I2C_Mem_Write(&hi2c1, DevAddress, SCD30_cnt_measurement, 0,&env_var,4, HAL_MAX_DELAY); if ( ret != HAL_OK ) { printf("\n\r I2C stop P failure \n\r"); } else { printf("I2C stop P Success\n"); } #endif #if 0// for spectral sensor SpecAddress = 0x39<< 1; if (HAL_OK == HAL_I2C_IsDeviceReady(&hi2c1, SpecAddress, 200, 200)) { //strcpy(print_msg, "SUCCESS HAL_I2C_Device_Read \n"); //HAL_UART_Transmit(&huart1, (uint8_t*) print_msg,strlen(MSG),1000); printf("I2C Success\n"); //if (HAL_OK == HAL_I2C_Mem_Read(&hi2c1, DevAddress, MemAddress,I2C_MEMADD_SIZE_8BIT, (uint8_t*) &env_var[0], // 0x0006, HAL_MAX_DELAY)) { // printf("%x , %x ,%x ,%x " ,env_var[0],env_var[1],env_var[2],env_var[3]); //} //else{ // printf("I2C_Mem_read_Failure\n"); //} } else { printf("I2C Failure\n"); } #endif } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } } /** * @brief I2C1 Initialization Function * @param None * @retval None */ static void MX_I2C1_Init(void) { /* USER CODE BEGIN I2C1_Init 0 */ /* USER CODE END I2C1_Init 0 */ /* USER CODE BEGIN I2C1_Init 1 */ /* USER CODE END I2C1_Init 1 */ hi2c1.Instance = I2C1; hi2c1.Init.ClockSpeed = 400000; hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2; hi2c1.Init.OwnAddress1 = 0; hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; hi2c1.Init.OwnAddress2 = 0; hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_ENABLE; if (HAL_I2C_Init(&hi2c1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN I2C1_Init 2 */ /* USER CODE END I2C1_Init 2 */ } /** * @brief USART1 Initialization Function * @param None * @retval None */ static void MX_USART1_UART_Init(void) { /* USER CODE BEGIN USART1_Init 0 */ /* USER CODE END USART1_Init 0 */ /* USER CODE BEGIN USART1_Init 1 */ /* USER CODE END USART1_Init 1 */ huart1.Instance = USART1; huart1.Init.BaudRate = 9600; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART1_Init 2 */ /* USER CODE END USART1_Init 2 */ } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */