
April 2018 UM2347 Rev 2 1/60

1

UM2347
User manual

Getting started with X-CUBE-CLD-GEN IoT cloud generic
 software expansion for STM32Cube

Introduction

This user manual describes the content and use of the X-CUBE-CLD-GEN IoT cloud
generic Expansion Package for STM32Cube.

The X-CUBE-CLD-GEN Expansion Package consists of a set of libraries and application
examples for STM32L4 Series, STM32F4 Series, and STM32F7 Series microcontrollers
acting as end devices.

These examples implement IoT cloud applications using the MQTT and HTTP protocols,
over Wi-Fi®, Ethernet, or cellular connections.

X-CUBE-CLD-GEN runs on five platforms:

• The B-L475E-IOT01A and 32F413HDISCOVERY boards support Wi-Fi® connectivity
with an on-board Inventek ISM43362 module

• The 32F769IDISCOVERY board provides a native Ethernet interface

• The P-L496G-CELL01 and P-L496G-CELL02 packs, with the 2G/3G Quectel UG96
and LTE Quectel BG96 cellular modem daughterboards respectively, support cellular
connectivity

For the five platforms, the sample applications configure the network connectivity
parameters, and illustrate the various ways for a device to interact with the cloud.

An application shows how an MQTT client can connect to an MQTT broker in order to
publish data and receive parameter updates or commands from the cloud.

Device authentication through MQTT login and password is supported. TLS encryption,
server authentication and device authentication are supported.

The MQTT broker can be a self-administrated server like Eclipse Mosquitto™, or the
Ubidots or Litmus Loop cloud platforms.

Other applications also demonstrate how a simple HTTP client can connect to either the
Exosite, Grovestreams or Ubidots cloud platforms using the HTTP or HTTPS protocol.

The B-L475E-IOT01A board reports telemetry data such as measurements of humidity,
temperature, 3-axis magnetic, acceleration, and gyroscope data, atmospheric pressure and
distance.

www.st.com

http://www.st.com

Contents UM2347

2/60 UM2347 Rev 2

Contents

1 General information . 7

2 X-CUBE-CLD-GEN IoT ecosystem . 8

3 Package description . 9

3.1 General description . 9

3.2 Architecture . 10

3.3 Folder structure . 12

3.4 B-L475E-IOT01A board sensors . 13

3.5 Wi-Fi components . 13

3.6 Cellular components . 13

3.7 Reset push-button . 13

3.8 User push-button . 13

3.9 User LED . 14

3.10 Real-time clock . 14

3.11 mbedTLS configuration . 14

4 Hardware and software environment setup . 15

5 Application build and flash . 17

6 Interacting with the boards . 18

7 B-L475E-IOT01A board . 20

7.1 Board capabilities . 20

7.2 Inventek module hardware interface . 20

7.3 Published data . 21

7.4 Running the application . 22

8 32F413HDISCOVERY board . 23

9 32F769IDISCOVERY board . 24

10 P-L496G-CELL01 and P-L496G-CELL02 packs 25

UM2347 Rev 2 3/60

UM2347 Contents

4

10.1 Board capabilities . 25

10.2 Module hardware interface . 25

10.3 Running the application . 26

11 MQTT generic application . 27

11.1 Application description . 27

11.2 User configuration . 27

11.3 Hosting an own MQTT broker . 29

11.4 Application first launch . 31

11.5 Application runtime . 33

12 Node-RED as a dashboard for the MQTT generic application 34

12.1 Installation . 34

12.2 Flow configuration . 35

12.3 Flow customization . 37

12.4 Dashboard display . 38

12.5 Under the hood . 39

12.6 Network architecture examples . 41

12.7 References . 43

13 Using the EMnify VPN . 44

14 MQTT Ubidots application . 46

14.1 Application description . 46

14.2 Account creation . 46

14.3 Device creation . 46

14.4 Application first launch . 47

14.5 Application runtime . 47

14.6 Dashboard use . 47

15 MQTT Litmus Loop application . 48

15.1 Application description . 48

15.2 Configuration at server level . 48

15.3 Configuration at client level . 48

15.4 Application first launch . 49

Contents UM2347

4/60 UM2347 Rev 2

15.5 Application runtime launch . 49

15.6 Web Litmus Loop interface . 49

16 HTTPS Exosite application . 50

16.1 Application description . 50

16.2 Account creation . 50

16.3 Device creation . 50

16.4 Application first launch . 51

16.5 Application runtime . 52

16.6 Dashboard use . 52

17 HTTPS Grovestreams application . 53

17.1 Application description . 53

17.2 Account creation . 53

17.3 Device creation . 53

17.4 Application first launch . 55

17.5 Application runtime . 55

17.6 Dashboard use . 55

18 HTTPS Ubidots application . 56

18.1 Application description . 56

18.2 Account creation . 56

18.3 Device creation . 56

18.4 Application first launch . 57

18.5 Application runtime . 57

18.6 Dashboard use . 57

19 Frequently asked questions . 58

20 Revision history . 59

UM2347 Rev 2 5/60

UM2347 List of tables

5

List of tables

Table 1. List of acronyms . 7
Table 2. Inventek module hardware interface. 20
Table 3. Units for the values reported by the sensors of the B-L475E-IOT01A board 21
Table 4. Quectel module hardware control interface . 25
Table 5. Quectel module SIM selection interface . 26
Table 6. Configurations without MQTT authentication . 28
Table 7. Configurations with MQTT authentication. 28
Table 8. Document revision history . 59

List of figures UM2347

6/60 UM2347 Rev 2

List of figures

Figure 1. X-CUBE-CLD-GEN IoT ecosystem. 8
Figure 2. X-CUBE-CLD-GEN software architecture. 11
Figure 3. Project file structure . 12
Figure 4. Hardware and software setup environment . 15
Figure 5. Terminal setup . 18
Figure 6. Serial port setup . 19
Figure 7. Node-RED dashboard: flow import (1/2). 35
Figure 8. Node-RED dashboard: flow import (2/2). 35
Figure 9. Node-RED dashboard flow anatomy: network connectors . 36
Figure 10. Node-RED dashboard flow anatomy: widgets . 36
Figure 11. Node-RED dashboard: MQTT/TLS node configuration . 37
Figure 12. Node-RED dashboard: flow deployment . 37
Figure 13. Node-RED dashboard: link to the dashboard . 38
Figure 14. Node-RED dashboard: clear dashboard. 38
Figure 15. Node-RED dashboard: updating dashboard. 39
Figure 16. Cartesian to spherical coordinates conversion function . 40
Figure 17. Node-RED dashboard: trace activation . 40
Figure 18. Node-RED dashboard: debug tab . 41
Figure 19. Local self-hosted services . 42
Figure 20. Remote managed services . 42
Figure 21. Remote self-hosted services . 43
Figure 22. EMnify VPN menu . 44
Figure 23. Traffic capture topology . 45
Figure 24. Exosite product ID . 51
Figure 25. Grovestreams API key configuration . 54
Figure 26. Pop-up when the IAR™ IDE version is not compatible with

the one used for X-CUBE-CLD-GEN . 58

UM2347 Rev 2 7/60

UM2347 General information

1 General information

The X-CUBE-CLD-GEN Expansion Package runs on STM32 32-bit microcontrollers based
on the Arm®(a) Cortex®-M processor. Table 1 presents the definition of acronyms that are
relevant for a better understanding of this document.

 .

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Table 1. List of acronyms

Term Definition

API Application programming interface

APN Access point number

BSP Board support package

C2C Cellular to cloud

CA Certification authority

CLI Command-line interface

DHCP Dynamic host configuration protocol

DNS Domain name server

ECDSA Elliptic curve digital signature algorithm

HAL Hardware abstraction layer

HTTP Hypertext transfer protocol

HTTPS Hypertext transfer protocol over SSL

IDE Integrated development environment

IoT Internet of things

IP Internet protocol

JSON JavaScript object notation

LED Light-emitting diode

MQTT Message queuing telemetry transport

MVNO Mobile virtual network operator

RSA Rivest–Shamir–Adleman cryptosystem

NAT Network address translation

RTC Real-time clock

SSL Secure sockets layer

TLS Transport layer security

UART Universal asynchronous receiver/transmitter

VPN Virtual private network

X-CUBE-CLD-GEN IoT ecosystem UM2347

8/60 UM2347 Rev 2

2 X-CUBE-CLD-GEN IoT ecosystem

This chapter introduces the environment in which the X-CUBE-CLD-GEN Expansion
Package can be used.

The X-CUBE-CLD-GEN Expansion Package implements connections to various cloud
platforms using either a MQTT or a HTTP connection

A user can connect to the cloud with a smartphone or personal computer and have access
to the information provided by the board at any time and from any location.

Figure 1 presents the IoT ecosystem targeted by the X-CUBE-CLD-GEN Expansion
Package.

Figure 1. X-CUBE-CLD-GEN IoT ecosystem

UM2347 Rev 2 9/60

UM2347 Package description

3 Package description

This chapter details the X-CUBE-CLD-GEN package content.

3.1 General description

The X-CUBE-CLD-GEN Expansion Package consists of a set of libraries and application
examples for STM32L4 Series, STM32F4 Series, and STM32F7 Series microcontrollers
acting as end devices.

X-CUBE-CLD-GEN runs on five platforms:

• The B-L475E-IOT01A and 32F413HDISCOVERY support Wi-Fi® connectivity with an
on-board Inventek ISM43362 module.

• The 32F769IDISCOVERY board provides a native Ethernet interface.

• The P-L496G-CELL01 and P-L496G-CELL02 packs, with the 2G/3G Quectel UG96
and LTE Quectel BG96 cellular modem daughterboards respectively, support cellular
connectivity. The P-L496G-CELL01 STM32 Discovery pack for 2G/3G cellular to cloud
(STM32-C2C/2G-3G) and P-L496G-CELL02 STM32 Discovery pack for LTE cellular to
cloud (STM32-C2C/2G-LTE) are turnkey development platforms for cellular- and cloud-
technology-based solutions. The packs are composed of an STM32L496AGI6-based
low-power Discovery mother board with preloaded firmware, and an STMod+ cellular
expansion board with antenna.

The X-CUBE-CLD-GEN Expansion Package contains the following components:

• Paho MQTT embedded C

• HTTP client library

• mbedTLS

• Inventek ISM43362 Wi-Fi® driver for the B-L475E-IOT01A and 32F413HDISCOVERY
boards

• Ethernet driver, FreeRTOS™, and LwIP for the 32F769IDISCOVERY board

• Sensor drivers for the B-L475E-IOT01A board

• Cellular driver for the P-L496G-CELL01 and P-L496G-CELL02 packs

• BSPs for the four boards

• STM32L4 Series, STM32F4 Series, and STM32F7 Series HAL

• Application examples

The software is provided as a zip archive containing source code.

The following integrated development environments are supported:

• IAR Embedded Workbench® for Arm® (EWARM)

• Keil® Microcontroller Development Kit (MDK-ARM)

• System Workbench for STM32

Refer to the release notes available in the package root folder for information about the IDE
versions supported.

Package description UM2347

10/60 UM2347 Rev 2

3.2 Architecture

This section describes the software components of the X-CUBE-CLD-GEN package.

X-CUBE-CLD-GEN is an Expansion Package for the STM32Cube. Its main features are:

• Fully compliant with STM32Cube architecture

• Expands STM32Cube in order to enable the development of applications accessing
and using various cloud platforms

• Based on the STM32CubeHAL, which is the hardware abstraction layer for STM32
microcontrollers

The software components used by the application software are the following:

• STM32Cube HAL
The HAL driver layer provides a generic multi-instance simple set of APIs (application
programming interfaces) to interact with the upper layers (application, libraries and
stacks).

It is composed of generic and extension APIs. It is directly built around a generic
architecture and allows the layers that are built upon, such as the middleware layer,
implementing their functionalities without dependencies on the specific hardware
configuration for a given microcontroller unit (MCU).

This structure improves the library code reusability and guarantees an easy portability
onto other devices.

• Board support package (BSP)
The software package needs to support the peripherals on the STM32 boards apart
from the MCU. This software is included in the board support package (BSP). This is a
limited set of APIs which provides a programming interface for certain board specific
peripherals such as the LED and the User button.

• MQTT client middleware
It is composed of the Paho MQTT embedded C client library (used as a transport layer
by the MQTT applications), and JSON parser.

• mbedTLS
MQTT and HTTPS use a TLS connection, which is managed by the mbedTLS library.

• TCP/IP
The TCP/IP connection can be handled either by the Wi-Fi® module, the cellular
module, or the LwIP middleware (when the Ethernet connection is used). In the X-
CUBE-CLD-GEN package, only the 32F769IDISCOVERY board can connect via
Ethernet.

• FreeRTOS™
It is a real-time operating system required by LwIP for providing a socket-based
interface to the user.

Figure 2 outlines X-CUBE-CLD-GEN software architecture.

UM2347 Rev 2 11/60

UM2347 Package description

Figure 2. X-CUBE-CLD-GEN software architecture

Package description UM2347

12/60 UM2347 Rev 2

3.3 Folder structure

Figure 3 presents the folder structure of the X-CUBE-CLD-GEN package.

Figure 3. Project file structure

UM2347 Rev 2 13/60

UM2347 Package description

3.4 B-L475E-IOT01A board sensors

The sensors that are present on the board and used by the sample application are:

• Capacitive digital sensor for relative humidity and temperature (HTS221)

• High-performance 3-axis magnetometer (LIS3MDL)

• 3D accelerometer and 3D gyroscope (LSM6DSL)

• 260-1260 hPa absolute digital output barometer (LPS22HB)

• Proximity sensor (VL53L0X)

3.5 Wi-Fi components

The Wi-Fi® software is split over Drivers/BSP/Components for the module specific software
and over Projects/<board>/WiFi for I/O operations and for the Wi-Fi® module abstraction.

3.6 Cellular components

The Cellular software is split over Drivers/BSP/Components for the module specific software
and Projects/STM32L496G-Discovery for I/O operations and for the Cellular module
abstraction.

The BSP\Components\ug96 directory contains the driver supporting by default the UG96
module. This software is also able to drive the BG96 module.

3.7 Reset push-button

The reset push-button (black) is used to reset the board at any time. This action makes the
board reboot.

3.8 User push-button

The User push-button (blue) is used:

• To enter a menu that allows configuring the Wi-Fi® or cellular, and security credentials.
This can be done from the time the board starts up to until five seconds after.

• When the board has been initialized, the use of this button is application specific. It is
documented in the runtime section of the corresponding application.

The application configures and manages the User button via the board support package
(BSP) functions.

The BSP functions are in the Drivers\BSP\<board name> directory.

When using the BSP button functions with the BUTTON_USER value, the application does
not take into account the way this button is connected from a hardware standpoint for a
given platform. The mapping is handled by the BSP.

Package description UM2347

14/60 UM2347 Rev 2

3.9 User LED

The configuration of the user LED that is used by the applications is done via the board
support package (BSP) functions.

The BSP functions are under the Drivers\BSP\<board name> directory.

Using the BSP button functions with the LED_GREEN value, the application does not take
into account the way the LED is mapped for a given platform. The mapping is handled by
the BSP.

3.10 Real-time clock

The STM32 RTC is updated at startup from the www.gandi.net web server. The
HAL_RTC_GetTime() function provides the time value to the user, for instance to
timestamp messages.

The libC time function is implemented based on the RTC.

3.11 mbedTLS configuration

The mbedTLS middleware support is fully configurable by means of a #include
configuration file.

The name of the configuration file can be overridden by means of the
MBEDTLS_CONFIG_FILE compilation switch.

The X-CUBE-CLD-GEN package uses file <application name>_mbedtls_config.h for project
configuration.

This is implemented by having the following # directives at the beginning of the mbedTLS.c
and mbedTLS.h files:

#if !defined(MBEDTLS_CONFIG_FILE)

#include "mbedtls/config.h"

#else

#include MBEDTLS_CONFIG_FILE

#endif

The configuration file specifies for instance the ciphers to integrate, the size of the internal
TLS buffers, or the platform porting callbacks.

UM2347 Rev 2 15/60

UM2347 Hardware and software environment setup

4 Hardware and software environment setup

To set up the hardware and software environment, one of the five supported platforms must
be plugged to a personal computer via a USB cable. This connection with the PC allows:

• Flashing the board

• Storing the Wi-Fi® or cellular, and security credentials

• Interacting with the board via a UART console

• Debugging

The B-L475E-IOT01A or 32F413HDISCOVERY boards must be connected to a Wi-Fi®

access point while the 32F769IDISCOVERY board must be connected to an Ethernet
interface. The P-L496G-CELL01 and P-L496G-CELL02 packs provide cellular connectivity.
The various setups are illustrated in Figure 4.

Figure 4. Hardware and software setup environment

Hardware and software environment setup UM2347

16/60 UM2347 Rev 2

The prerequisites for running the examples are:

• One of the following connectivity solution:

– A Wi-Fi® access point, with a transparent Internet connectivity meaning that
neither a proxy, nor a firewall are blocking the outgoing traffic. It has to run a
DHCP server delivering the IP and DNS configuration to the board.

– An Ethernet connection with a transparent Internet connectivity meaning that
neither a proxy, nor a firewall are blocking the outgoing traffic.

– A valid cellular subscription, with activated wireless communications data
services, either from the embedded SIM integrating the MVNO profile or from an
external Micro-SIM.

• A development PC for building the application, programming through ST-LINK, and
running the virtual console.

• A computer for running:

– An MQTT broker (server) that the user can configure. If any, the computer firewall
must let the MQTT connections in (typically ports 1883 and 8883).

Preferably use Eclipse Mosquitto™, for which the package provides example
configuration files.

In order to activate the TLS server authentication, the broker must run on a host
that the user board can have access to through its host name. If the host is part of
a private LAN, a local DNS server is needed.

– An MQTT client in order to interact with the device. A Node-RED instance
provides dashboards. Otherwise, a plain Eclipse Mosquitto™ MQTT client is
simpler to install.

– This can for instance be the development PC, a virtual private server, or a single-
board computer.

• The OpenSSL™ toolset, to build the user root CA, device certificate, and trust chain.

UM2347 Rev 2 17/60

UM2347 Application build and flash

5 Application build and flash

Caution: Before opening the project with any tool chain, make sure that the folder installation path is
not too deep since the tool chain may report errors after the build otherwise.

Open and build the project with one of the supported development tool chains (see the
release notes for detailed information about the version requirements).

Program the firmware on the STM32 board: copy (or drag and drop) the binary file under
Projects\<board name>\Applications\Cloud\<...>\Binary to the USB mass storage location
created when the STM32 board is plugged to the PC. Alternatively, you can program the
STM32 board directly through one of the supported development tool chains.

Interacting with the boards UM2347

18/60 UM2347 Rev 2

6 Interacting with the boards

A serial terminal is required to:

• Configure the board

• Display locally the received application IoT cloud-to-device messages

The example in this document is illustrated with the use of Tera Term. Any other similar tool
can be used instead.

When the board is used for the first time, it must be programmed with the cloud device IoT
identification data. The Cloud device IoT identification data are specific to each IoT cloud
provider and detailed in the application related sections of this document:

• Determine the STM32 ST-LINK Virtual COM port used on the PC for the Discovery
board. On a Windows® PC, open the Device Manager.

• Open a virtual terminal on the PC and connect it to the above virtual COM port.

A Tera Term initialization script is provided in the package utility directory (refer to Figure 3);
this script sets the correct parameters. To use it, open Tera Term, select Setup and then
Restore setup.

The information provided below in this chapter can be used to configure the UART terminal
as an alternative to using the Tera Term initialization script.

The terminal setup is illustrated in Figure 5, which shows the terminal setup and the New-
line recommended parameters.

The virtual terminal New-line transmit configuration must be set to LineFeed (\n or LF) in
order to allow copy-paste from Unix® type text files. The Local echo option makes copy-
paste visible on the console.

Figure 5. Terminal setup

UM2347 Rev 2 19/60

UM2347 Interacting with the boards

The serial port must be configured with:

• COM port number

• 115200 baud rate

• 8-bit data

• Parity none

• 1 stop bit

• No flow control

The serial port setup is illustrated in Figure 6.

Figure 6. Serial port setup

Once the UART terminal and the serial port are set up, press the board reset button (black).

Follow the indications on the UART terminal to upload Wi-Fi® or cellular, and cloud data.
Those data remain in Flash and are reused the next time the board boots.

B-L475E-IOT01A board UM2347

20/60 UM2347 Rev 2

7 B-L475E-IOT01A board

This section describes how the B-L475E-IOT01A board is used in this package.

7.1 Board capabilities

The sensors that are present on the board and used by the sample applications are:

• Capacitive digital sensor for relative humidity and temperature (HTS221)

• High-performance 3-axis magnetometer (LIS3MDL)

• 3D accelerometer and 3D gyroscope (LSM6DSL)

• 260-1260 hPa absolute digital output barometer (LPS22HB)

• Proximity sensor (VL53L0X)

7.2 Inventek module hardware interface

The Inventek module is connected to the MCU and controlled by it as described in Table 2.

Table 2. Inventek module hardware interface

Name Pin Type Comment

ISM43362_RST PE8
Output GPIO, open drain
mode

Active low.

The Inventek module after power-up
or reset raises the CMD/DATA
READY pin to signal that the first
Data Phase has started. The

CMD/DATA READY pin is mapped to
the ISM43362_DRDY_EXTI1
STM32 MCU pin.

ISM43362_BOOT0 PB12 Output GPIO, push pull mode Enable Inventek micro boot loader.

ISM43362_WAKEUP PB13
Output GPIO, open drain
mode

Seen from the Inventek module, the
wakeup pin is an external interrupt
pin that on the rising edge causes
the module to exit stop mode. It is an
edge trigged input.

ISM43362_SPI3_CSN PE0
Output GPIO, open drain
mode

The STM32 host must set this output
to Low to initiate a communication
with the Wi-Fi® module.

ISM43362_DRDY_EXTI1 PE1
Input GPIO, interrupt mode
when rising

The Inventek module sets this pin to
High when ready to communicate.

INTERNAL_SPI3_SCK PC10
Mode SPI3 Alternate
Function, no pull

SPI interface to read and write data
to the Inventek Wi-Fi® module.

INTERNAL_SPI3_MISO PC11

INTERNAL_SPI3_MOSI PC12

UM2347 Rev 2 21/60

UM2347 B-L475E-IOT01A board

7.3 Published data

Here is an example of a published sensor message:

publication topic: /sensors/Device001 payload: {

 "state": {

 "reported": {

 "temperature": 28.27,

 "humidity": 27.92,

 "pressure": 971.21,

 "proximity": 2040,

 "acc_x": -30, "acc_y": -5, "acc_z": 1034,

 "gyr_x": 910, "gyr_y": -2520, "gyr_z": 1120,

 "mag_x": 96, "mag_y": -45, "mag_z": 527,

 "ts": 1519913214, "mac": "C47F5101186"

 }

 }

}

Table 3 presents the units for the values reported by the sensors of the B-L475E-IOT01A
board.

Table 3. Units for the values reported by the sensors of the B-L475E-IOT01A board

Data Unit

Temperature degree Celsius (°C)

Humidity relative humidity (%)

Pressure hectopascal (hPa)

Proximity millimeter (mm)

Acceleration milli g-force (mgforce)

Angular velocity millidegree per second (mdps)

Magnetic induction milligauss (mG)

B-L475E-IOT01A board UM2347

22/60 UM2347 Rev 2

7.4 Running the application

The steps to run the application are listed below:

1. Set-up the infrastructure if you administrate your own server and cloud devices as
explained in the section related to the application that you use.

2. Make sure that the liner (which is a very thin film placed on the proximity sensor) has
been removed, otherwise value 8190 is reported for the proximity measurement.

3. Ensure that JP8 is open, JP5, JP6 and JP7 are closed, JP4 is set to 5V_ST_LINK.

4. Connect a Type-A to Micro-B USB cable from the B-L475E-IOT01A1 or
B-L475E-IOT01A2 IoT Discovery board (connector USB ST-LINK CN7) to a PC.

5. LED6 (ST-LINK COM - bi color) must be lit (red) and LED5 (5 V power) must also be lit
(LED5 is green).

6. Under the directory Projects\ B-L475E-IOT01\Applications\Cloud\<Cloud
provider>\<tool chain>, select the project, build and flash the binary with the IDE.

UM2347 Rev 2 23/60

UM2347 32F413HDISCOVERY board

8 32F413HDISCOVERY board

The 32F413HDISCOVERY Discovery kit allows users developing applications with the
STM32F4 Series microcontrollers based on the Arm® Cortex®-M4 core. It embeds a
STM32F413ZHT6 microcontroller featuring 1.5 Mbytes of Flash memory and 320 Kbytes of
SRAM, in an LQFP144 package.

The ISM43362 Inventek Wi-Fi® module 802.11 b/g/n is integrated on this board.

When needed, more information is available to the web page of www.st.com dedicated to
this board.

32F769IDISCOVERY board UM2347

24/60 UM2347 Rev 2

9 32F769IDISCOVERY board

The 32F413HDISCOVERY Discovery kit allows users developing and share applications
with the STM32F4 Series microcontrollers based on the Arm® Cortex®-M7 core. It embeds
a STM32F769NIH6 microcontroller featuring 2 Mbytes of Flash memory and
512 + 16 + 4 Kbytes of SRAM, in a BGA216 package.

The 32F413HDISCOVERY is equipped with an Ethernet connector.

When needed, more information is available to the web page of www.st.com dedicated to
this board.

UM2347 Rev 2 25/60

UM2347 P-L496G-CELL01 and P-L496G-CELL02 packs

10 P-L496G-CELL01 and P-L496G-CELL02 packs

10.1 Board capabilities

The P-L496G-CELL01 and P-L496G-CELL02 packs allow users developing their
applications with the STM32L4 Series microcontrollers based on the Arm® Cortex®-M4
core.

Both packs embed a display-less variant of the 32L496GDISCOVERY Discovery board with
the low-power STM32L496AGI6 microcontroller, featuring 1 Mbyte of Flash memory and
320 Kbytes of SRAM, in an UFBGA169 package. They also come with an add-on board
connected through the STMod+ connector.

The add-on board features:

• A 2G/3G modem (UG96 module, for the P-L496G-CELL01 pack) or
an LTE-IoT Cat M1/NB1/2G modem (BG96 module, for the P-L496G-CELL02 pack)

• An embedded ST Incard™ SIM with an MVNO profile, ready to use

• A 32-Kbyte EEPROM containing instructions, which have been preloaded at
manufacturing. Among others, the preloaded FW allows the activation of the
embedded SIM by using a console application.

• A USB port, which can be used to have access to the Quectel module (FW upgrade,
AT commands). It can also be used as an additional power source.

Both modules (UG96 and BG96) are addressed with a set of AT-commands that are for
most of them compatible over the 2 packs.

10.2 Module hardware interface

The daughter board is connected to the MCU through an ST-Mod+ connector. The Quectel
modem is controlled by means of a series of pins as described in Table 4.

Table 4. Quectel module hardware control interface

Name Pin Type Comment

RST PB2 Output GPIO, push-pull mode The STM32 host uses these pins to
power on or reset the cellular module.PWR PD3 Output GPIO, push-pull mode

TX PB6
Mode UART1 Alternate Function,
pull up The UART interface is used to read

and write data from and to the cellular
module.RX PG10

Mode UART1 Alternate Function,
pull up

P-L496G-CELL01 and P-L496G-CELL02 packs UM2347

26/60 UM2347 Rev 2

The SIM is selected through two pins as described in Table 5.

10.3 Running the application

The steps to run the application are listed below:

1. Connect the Quectel UG96 or BG96 daughterboard to the MCU board IO expander
keeping the modem package upside and the SIM card slot downside.

UG96 is the modem used by default. In case BG96 is used, the user needs to define
the USE_BG96 compilation switch in the project.

2. Activate the UG96 or BG96 embedded SIM card

The kit comes with a 3-month free-of-charge subscription prepaid with 3 euros. The
amount of data it represents depends on the geographical zone; it varies between
15 Mbytes and 0.85 Mbyte.

The user must enter a voucher on the https://stm32-c2c.com portal to activate the
subscription. The voucher is obtained by connecting the board to an hyperterminal as
specified in the blister.

If the board needs to be reinitialized with its original firmware, it is available at
https://stm32-c2c.com under Restore factory firmware.

Once the board is registered on the https://stm32-c2c.com portal with its voucher,
proceed with the EMnify button available on the portal.

3. Retrieve the APN, username and password from your SIM provider.

In the case of the Embedded SIM integrating the MVNO profile:
For EMnify: set APN to em. No need to set a username/password combination when
later prompted for it in the console.

4. Ensure that JP7 is closed (ST_LINK as power source) and that SW1 (blue switch) is
ON.

5. Connect a Type-A to Micro-B USB cable from the STM32L496AGI6-based Discovery
board (connector USB ST-LINK CN5) to a PC.

6. On the MCU side:

a) LED5 (ST-LINK COM - bi color) must be lit (red). LED8 (5 V power) must also be
lit (green).

b) LED2 (green), then LED1 (red) must be consecutively lit.

7. On the cellular daughter board side:

– LED1 (red) must be lit (module is powered on), then LED2 (green) must blink (the
radio is running).

8. Under directory Projects\STM32L496G-Discovery\Applications\Cloud\<Cloud
provider>\<tool chain>, select the project, then build and flash the binary with the IDE.

Table 5. Quectel module SIM selection interface

Name Pin Type Comment

SIM_SEL0 PC2
Output GPIO, push-pull
mode

The STM32 host selects the SIM (embedded
or external slot).

– Assuming SIM_SEL1 is low:

– Set SIM_SEL0 high to select the
embedded SIM

– Set SIM_SEL0 low to select the external
SIM

SIM_SEL1 PI3
Output GPIO, push-pull
mode

UM2347 Rev 2 27/60

UM2347 MQTT generic application

11 MQTT generic application

11.1 Application description

The GenericMQTTXcubeSample application implements an MQTT client, which connects to
an MQTT broker in order to publish telemetry data and receive parameter updates or
commands from the cloud.

The quickest way to get started is to use a clear connection without any authentication to
test.mosquitto.org. It hosts a publicly available Eclipse Mosquitto™ MQTT server/broker. In
such a case, Section 11.3: Hosting an own MQTT broker is not applicable.

When a secure network connection is needed, the use of TLS is mandatory. This implies
more dependencies, like downloading the root Certification Authority certificate of the MQTT
broker, or even creating the device x509 private key and certificate if a mutual authentication
is needed.

11.2 User configuration

The application user configuration is formatted as a "configuration string". It is entered by
the user on the serial console and stored in the MCU Flash memory.

It can be updated at startup upon user prompt.

The user configuration string consists of:

1. The server location: host name and port number

2. The network connection security level:

a) Clear connection

b) TLS encrypted (insecure mode, for test purpose only)

c) TLS encrypted, with x509 server authentication

d) TLS encrypted, with mutual client-server x509 authentication

3. The MQTT Client ID

4. [Optional] The MQTT user name and password

After the configuration string is entered, the application requests the user to paste the
needed root CA certificate(s) and possibly the device certificate and key, according to the
specified configuration security level. Refer to Section 11.3: Hosting an own MQTT broker
for more details on TLS provisioning.

The client configuration must match the server configuration.

Table 6 and Table 7 describe the supported modes, and which server configuration matches
a given client configuration. Mosquitto client/server command line parameters are provided.
Refer to the mosquitto_sub and mosquitto.conf man pages for more details.

MQTT generic application UM2347

28/60 UM2347 Rev 2

Table 6. Configurations without MQTT authentication

Configuration Device configuration string
Mosquitto client
command line

Mosquitto server
configuration file

Clear connection
HostName=<mqtt_server_hostna
me>;HostPort=1883;ConnSecuri
ty=0;MQClientId=mySTM32_1;

mosquitto_sub -v -h
<mqtt_server_hostnam
e> -t '#'

listener 1883

Encrypted
connection without
server
authentication

HostName=<mqtt_server_hostna
me>;HostPort=8883;ConnSecuri
ty=1;MQClientId=mySTM32_1;

mosquitto_sub -v -h
<mqtt_server_hostnam
e> -t '#' -p 8883 --
cafile ca.crt --
insecure

listener 8883

cafile ca.crt

certfile
server.crt

keyfile
server.key

Encrypted
connection with
server
authentication

HostName=<mqtt_server_hostna
me>;HostPort=8883;ConnSecuri
ty=2;MQClientId=mySTM32_1;

mosquitto_sub -v -h
<mqtt_server_hostnam
e> -t '#' -p 8883 --
cafile ca.crt

listener 8883

cafile ca.crt

certfile
server.crt

keyfile
server.key

Encrypted
connection with
mutual
authentication

HostName=<mqtt_server_hostna
me>;HostPort=8883;ConnSecuri
ty=3;MQClientId=mySTM32_1;

mosquitto_sub -v -h
<mqtt_server_hostnam
e> -t '#' -p 8883 --
cafile ca.crt --cert
client.crt --key
client.key

listener 8883

cafile ca.crt

certfile
server.crt

keyfile
server.key

require_certifica
te true

Table 7. Configurations with MQTT authentication

Configuration Device configuration string
Mosquitto client
command line

Mosquitto server
configuration file

Clear connection

HostName=<mqtt_server_hostna
me>;HostPort=1883;ConnSecuri
ty=0;MQClientId=mySTM32_1;MQ
UserName=my_user;MQUserPwd=m
y_pwd;

mosquitto_sub -v -h
<mqtt_server_hostnam
e> -t '#' -u
my_user -P my_pwd

listener 1883

allow_anonymous
false

password_file
auth.txt

Encrypted
connection without
server
authentication

HostName=<mqtt_server_hostna
me>;HostPort=8883;ConnSecuri
ty=1;MQClientId=mySTM32_1;MQ
UserName=my_user;MQUserPwd=m
y_pwd;

mosquitto_sub -v -h
<mqtt_server_hostnam
e> -t '#' -p 8883 --
cafile ca.crt –
insecure -u my_user
-P my_pwd

listener 8883

allow_anonymous
false

password_file
auth.txt

cafile ca.crt

certfile
server.crt

keyfile server.key

UM2347 Rev 2 29/60

UM2347 MQTT generic application

Notes:

• To be configured by the user:

– Replace <mqtt_server_hostname> by the fully qualified name of the host of the
MQTT broker.

It must match the CommonName of the server certificate.

With security modes 0 and 1 (and only with those), if the server fully qualified
name cannot be resolved by the client, the IP address may be used instead.

– my_user and my_pwd must match the content of the auth.txt password file.

• The auth.txt file is generated by the mosquitto_passwd command. Refer to the
mosquitto_passwd man page for details.

• If several clients may connect to the same broker, each must have a different
MQClientId.

• An Eclipse Mosquitto™ broker can support several configurations simultaneously,
provided that:

– Each resides on a different port

– All share the same authentication file

11.3 Hosting an own MQTT broker

Hosting an MQTT broker requires:

Encrypted
connection with
server
authentication

HostName=<mqtt_server_hostna
me>;HostPort=8883;ConnSecuri
ty=2;MQClientId=mySTM32_1;MQ
UserName=my_user;MQUserPwd=m
y__pwd;

mosquitto_sub -v -h
<mqtt_server_hostnam
e> -t '#' -p 8883 --
cafile ca.crt -u
my_user -P my_pwd

listener 8883

allow_anonymous
false

password_file
auth.txt

cafile ca.crt

certfile
server.crt

keyfile server.key

Encrypted
connection with
mutual
authentication

HostName=<mqtt_server_hostna
me>;HostPort=8883;ConnSecuri
ty=3;MQClientId=mySTM32_1;MQ
UserName=my_user;MQUserPwd=m
y__pwd;

mosquitto_sub -v -h
<mqtt_server_hostnam
e> -t '#' -p 8883 --
cafile ca.crt --cert
client.crt --key
client.key -u
my_user -P my_pwd

listener 8883

allow_anonymous
false

password_file
auth.txt

cafile ca.crt

certfile
server.crt

keyfile server.key

require_certifica
te true

Table 7. Configurations with MQTT authentication (continued)

Configuration Device configuration string
Mosquitto client
command line

Mosquitto server
configuration file

MQTT generic application UM2347

30/60 UM2347 Rev 2

1. A host, which can be reached by the device over TCP/IP

– Sufficient privileges are required to install applications and open TCP ports

– On a Debian® or Ubuntu® host: > apt-get install mosquitto

2. Generating keys and certificates, for TLS use

As shown in Table 6 and Table 7, several key and certificate files must be provisioned
on server and client side, depending on the selected network connection security level:

– ca.crt The shared root Certification Authority certificate

– server.key The server private key

– server.crt The server certificate, signed by the root CA

– client.key The client key

– client.crt The client certificate, signed by the root CA

The first three files are needed as soon as TLS is to be enabled. The last two files are
needed only if the chosen security level requires mutual authentication.

Those files can be created by the OpenSSL™ utility. OpenSSL™ is available on multiple
platforms, including Linux® and Cygwin™. The commands listed in the sequence presented
hereafter work with OpenSSL™ 1.0.2:

1. Create a root certification authority, which signs the certificates of the server and
device:

openssl req -new -x509 -days 1000 -extensions v3_ca -keyout
ca.key -out ca.crt

This produces files ca.key and ca.crt.

2. Create the server files (for Eclipse Mosquitto™):

a) Create a private key for the server:

For an ECDSA key:

openssl ecparam -name secp384r1 -out server.key -genkey

For an RSA key:

openssl genrsa -out server.key 2048

This produces file server.key.

b) Create a certificate signature request from the server key:

openssl req -out server.csr -key server.key -new

This produces file server.csr.

Caution: It is important that the Common Name (CN) that is set in the certificate request matches the
host name of the host where Eclipse Mosquitto™ runs. Otherwise, the server certificate
verification fails and the MQTT client does not connect. For instance, if Eclipse Mosquitto™
runs at myiothost.st.com, CN must be set to myiothost.st.com, or *.st.com.

Alternatively, if the name of the server cannot be resolved through DNS by the device, the
host verification feature must be disabled by setting option ConnSecurity to 0 or 1 in the
connection string when prompted on the console.

c) Create the server certificate, signed by the root certification authority:

openssl x509 -req -in server.csr -CA ca.crt -CAkey ca.key -
CAcreateserial -out server.crt -days 1000

This produces files server.crt and ca.srl.

UM2347 Rev 2 31/60

UM2347 MQTT generic application

3. Create the client files (for the device)

a) Create a private key for the client:

openssl genrsa -out client.key 2048

This produces file client.key.

b) Create a certificate signature request from the client key:

openssl req -out client.csr -key client.key -new

This produces file client.csr.

c) Create the client certificate for the device, signed by the root certification authority:

openssl x509 -req -in client.csr -CA ca.crt -CAkey ca.key -
CAcreateserial -out client.crt -days 1000

This produces files client.crt and ca.srl.

At this point, on the server side, the server credentials must be passed to Eclipse
Mosquitto™ through configuration file mosquitto.conf (absolute paths are recommended):

• listener 8883

• cafile /home/john/ca.crt

• certfile /home/john/server.crt

• keyfile /home/john/server.key

The server is launched on the host with mosquitto -v -c mosquitto.conf.

Note: In order to check that the server is reachable from the network, try to join it through telnet
from a different host: telnet <hostname> <port number>.
If the host can be resolved and the port is not blocked by a firewall, the server displays "New
connection from xxx on port yyy" on the standard error output.

Finally, on the device side, set the security credentials when prompted on the console at
application startup, by pasting the contents of ca.crt (concatenated with the other root CA
certificates required by the application; this is described in Section 11.4 at step 8), client.crt
and client.key.

11.4 Application first launch

The first launch of the application is described by the following sequence from step 1 to
step 9. Steps 1 and 2 are skipped when connecting to test.mosquitto.org:

MQTT generic application UM2347

32/60 UM2347 Rev 2

1. Prepare the TLS credentials matching the desired user configuration as detailed in
Section 11.2: User configuration and Section 11.3: Hosting an own MQTT broker.

2. Configure and start the Eclipse Mosquitto™ MQTT broker.

3. Choose a DeviceID for the MQTT client to be used as:

– ClientID in the device configuration string

– DeviceID to build the topic names in case subscription or sending commands
manually to the device is needed

– DeviceID in the Node-RED sample dashboard

4. Connect the board to the development PC through USB (ST-LINK USB port). For more
details, refer to Chapter 6: Interacting with the boards on page 18.

5. Open the console through a serial terminal emulator such as Tera Term, select the ST-
LINK COM port of the board, and configure it with:

– 8N1, 115200 bauds, no HW flow control

– Line endings set to LF or CR-LF (Transmit) and LF (Receive)

6. For the Wi-Fi®-enabled boards, enter the Wi-Fi® SSID, encryption mode and password
via the console.

For the board with cellular connectivity, enter the C2C network configuration (SIM
operator access point code, user name and password).

Examples:

 - with EMnify SIM: access point: "em", username: "", password: ""

 - with Eseye SIM: access point: "ESEYE1", username: "", password: ""

7. Set the device configuration string, without the enclosing quotes ("), or leading/trailing
spaces. Apply the connection string template printed in the console.

When connecting to test.mosquitto.org, the configuration string is:

HostName=test.mosquitto.org;HostPort=1883;ConnSecurity=0;MQClie
ntId=<DeviceID>;

Make sure that DeviceID is set and unique.

8. Set the TLS root CA certificates, which the device uses to authenticate the remote
hosts through TLS.

The application requires that a concatenation of 2 CA certificates is provided:

a) For the HTTPS server, which is used to retrieve the current time and date at boot
time (the Comodo certificate).

It is located in Projects/Common/GenericMQTT/Comodo.crt

b) For the MQTT server, which can also be connect through TLS.

Depending on the broker chosen, it can be the root CA certificate that has been
created for the MQTT broker, or the server CA provided by the cloud provider such
as Litmus Loop, Ubidots, or test.mosquitto.org.

The concatenated string must end with an empty line.

If test.mosquitto.org is used in an unencrypted way, as set by the connection string at
step 7, only the Comodo certificate is needed.

9. After the parameters are configured, it is possible to change them by restarting the
board and pushing the User button (blue button) when prompted.

UM2347 Rev 2 33/60

UM2347 MQTT generic application

11.5 Application runtime

1. The application makes an HTTPS request to retrieve the current time and date, and
configure the RTC. Once OK, the RTC is updated.

Note: HTTPS has the advantage over NTP that the server can be authenticated by the
board, preventing a possible man-in-the-middle attack. However, the first time the
board is switched on (and each time it is powered down and up, if the RTC is not
backed up), the verification of the server certificate fails as its validity period does not
match the RTC value. The following log is then printed on the console:

x509_verify_cert() returned -9984 (-0x2700)

If the CLOUD_TIMEDATE_TLS_VERIFICATION_IGNORE switch is defined in “cloud.c”,
which is the case by default, this error is ignored and the RTC is updated from the
"Date:" field of the HTTP response header. Otherwise, a few more error log lines are
printed, and the application tries to connect again without verifying the server
certificate.

2. The application connects to the MQTT broker by:

a) Sending the status of the device (LED status and TelemetryInterval) to the
status topic (/devices/<DeviceID>/status in the generic case)

b) Staying idle, pending on local user, or hub-initiated events

The possible local user actions are:

• Single push on the User button:

Trigs a sampling of the sensor values and their publication to the broker through a
publish MQTT message on the telemetry topic (/sensors/<DeviceID> in the generic
case).

• Double push on the User button:

Starts or stops the publication loop of the sensor values. When the loop is running, the
sensor values are published every TelemetryInterval seconds. Each sensor
values publication is signaled by the user LED blinking quickly for half a second.

Issues possible remotely-initiated events by publishing specific payloads to the topic
the device has registered to, from another MQTT client (this topic is displayed on the
console /devices/<DeviceID/control in the generic case):

– LED control command:

Publish the payload {"LedOn": true} or {"LedOn": false}

– Change of the TelemetryInterval telemetry publication interval:

Publish the payload {"TelemetryInterval": <number of seconds>}

– Reboot command:

Publish the payload {"Reboot": true}

Upon update, the LED status and the TelemetryInterval value are published to
the device status topic.

If the MQTT broker is part of a managed cloud service such as Litmus Loop, or Ubidots, the
name of the MQTT topics and the format of the MQTT messages must generally be
customized in the application code. There are already such customizations under
compilation switches in the sample application.

Node-RED as a dashboard for the MQTT generic application UM2347

34/60 UM2347 Rev 2

12 Node-RED as a dashboard for the MQTT generic
application

The Node-RED node.js application is a convenient tool to build cross-protocol network use
cases based on graphical data flow descriptions and Javascript plug-ins.

For instance, the Node-RED application can host MQTT clients, which run alongside an
MQTT broker, in order to build a use case involving several MCU boards and a graphical
web user interface.

Node-RED is a graphical alternative to the Eclipse Mosquitto™ command line pub/sub
client.

For new users, it is recommended to start with the mosquitto CLI, and setup a Node-RED
flow only once advanced visualization is needed.

Node-RED is most useful on the devices that embed various sensors to be monitored,
thanks to its dashboard extension.

This chapter shows how to create a graphical dashboard for the STM32L4-Series-based
B-L475E-IOT01A IoT board and its embedded sensors.

12.1 Installation

Node-RED can be installed on Linux®, Windows® or macOS®. The installation example
shows Linux® command lines:

1. Install a recent node package from nodejs.org and get the node command in the PATH

2. Install Node-RED, for instance in a local X-CUBE-node-red directory:

– mkdir X-CUBE-node-red && cd X-CUBE-node-red

– npm install --unsafe-perm node-red

3. Install the node-red-dashboard extension:

– npm install node-red-dashboard

4. Launch the Node-RED platform:

– node node-modules/node-red/red.js

5. Connect to the platform with a web browser at http://127.0.0.1:1880

Note: If the Node-RED server is installed on a headless host, remote connection to the platform is
possible with the host name or IP address. If needed, port 1880 must be opened in the host
firewall.

Caution: By default, access to the Node-RED server is public. For setting Node-RED access rights,
and to use HTTPS for the connection, refer to the security section of the Node-RED user
guide.

UM2347 Rev 2 35/60

UM2347 Node-RED as a dashboard for the MQTT generic application

12.2 Flow configuration

Import Projects/Common/GenericMQTT/flow.nodered through a copy-paste to the clipboard
as shown in Figure 7 and Figure 8.

Figure 7. Node-RED dashboard: flow import (1/2)

Figure 8. Node-RED dashboard: flow import (2/2)

Node-RED as a dashboard for the MQTT generic application UM2347

36/60 UM2347 Rev 2

As a result, the MQTT flow is displayed as illustrated in Figure 9 and Figure 10.

Figure 9. Node-RED dashboard flow anatomy: network connectors

Figure 10. Node-RED dashboard flow anatomy: widgets

UM2347 Rev 2 37/60

UM2347 Node-RED as a dashboard for the MQTT generic application

12.3 Flow customization

Double-click and configure each MQTT node. Both clear and TLS connections are
supported as illustrated in Figure 11.

Figure 11. Node-RED dashboard: MQTT/TLS node configuration

After the confirmation of all the changes by clicking Update / Done on the configuration
blade, click on the Deploy button as shown in Figure 12.

Figure 12. Node-RED dashboard: flow deployment

Node-RED as a dashboard for the MQTT generic application UM2347

38/60 UM2347 Rev 2

12.4 Dashboard display

Go to http://127.0.0.1:1880/ui, or click on the shortcut in the dashboard tab of the flow web
page as shown in Figure 13.

Figure 13. Node-RED dashboard: link to the dashboard

The IoT board dashboard is displayed as in Figure 14. There is no data at this stage.

Figure 14. Node-RED dashboard: clear dashboard

UM2347 Rev 2 39/60

UM2347 Node-RED as a dashboard for the MQTT generic application

Set the DeviceID field according to the device configuration and press ENTER to validate
the update. Start the GenericMQTT application on the device, activate the publication loop
by a double-push on the User button, and see the live update of the widgets as illustrated in
Figure 15.

Figure 15. Node-RED dashboard: updating dashboard

It is then possible to control the board by:

• Toggling the LED switch to drive the LED status

• Changing the telemetry interval

• Sending a reboot command

• Switching to the monitoring of another board by changing the DeviceID field

12.5 Under the hood

The 3-axis measurements are displayed in spherical coordinates. They are translated from
the Cartesian coordinates by simple function nodes. Figure 16 shows how this is done in the
Spherical Acc node.

Node-RED as a dashboard for the MQTT generic application UM2347

40/60 UM2347 Rev 2

Figure 16. Cartesian to spherical coordinates conversion function

A trace of the /sensors/# topic is activated by clicking on the right of the stdout debug node
and further clicking on the flow button as shown in Figure 17.

Figure 17. Node-RED dashboard: trace activation

The trace is displayed on the Node-RED server standard output, and on the debug tab of
the flow. It is also possible to connect any node output to the stdout node, and get any data
traced in the debug tab as presented in Figure 18.

UM2347 Rev 2 41/60

UM2347 Node-RED as a dashboard for the MQTT generic application

Figure 18. Node-RED dashboard: debug tab

12.6 Network architecture examples

The security rules of the local network infrastructure can impact the location of the MQTT
and HTTP applications that implement the test case.

This section presents various possible network architecture mappings.

Node-RED as a dashboard for the MQTT generic application UM2347

42/60 UM2347 Rev 2

The user only manages the test LAN, a computer on this LAN, and the
servers.

Figure 19 shows an example of a related network architecture.

Figure 19. Local self-hosted services

The user only manages the test LAN and a computer on this LAN.

In this case, the user is not willing to manage the servers. Figure 20 shows an example of a
related network architecture.

Figure 20. Remote managed services

UM2347 Rev 2 43/60

UM2347 Node-RED as a dashboard for the MQTT generic application

The user only manages the test LAN.

In this case, the user does not manage a computer on the LAN. A Virtual Private Server
must be leased. Figure 21 shows an example of a related network architecture.

Figure 21. Remote self-hosted services

12.7 References

Useful Node-RED information for the use as an MQTT generic application dashboard are
available at:

• https://nodered.org/

• http://noderedguide.com/

Using the EMnify VPN UM2347

44/60 UM2347 Rev 2

13 Using the EMnify VPN

EMnify customers can create their own virtual private network for their mobile IoT/M2M
devices fitted with EMnify SIMs. Data traffic is exchanged between the devices and the
application server through an OpenVPN® tunnel, enabling direct communication with the
IPs of the mobile devices (no NAT applied).

The tunnel is established between the EMnify core network and the customer VPN gateway
or server.

This chapter describes how a user can connect an EMnify endpoint to a lab computer(a)
using a VPN connection. The lab computer can act as an application server or a relay that
redirects messages to any IoT cloud server.

EMnify allocates one private address space to each organization, for instance
10.193.184.0/22.

• All the cellular endpoints with SIM cards associated to the organization belong to the
subnet

• Each organization is provided with one OpenVPN® client configuration file

A tun0 virtual network interface is created in the 10.0.0.0/8 subnet on the lab PC. Refer to
the installation details on the top-right corner of the EMnify account start page as illustrated
in Figure 22.

Figure 22. EMnify VPN menu

The Technical Resources section of the EMnify web page provides additional
documentation.

Two topologies are possible:

• The application server runs on the host of the OpenVPN® client

• The application server runs on another host than the OpenVPN® client

The application server runs on the host of the OpenVPN® client

In such a case, an HTTP or MQTT server runs on the lab PC (inside the test LAN), which is
now part of the VPN.

The traffic reaching the application server can be analyzed by running a network protocol
analyzer on the lab PC.

a. In this chapter, the lab computer or lab PC is the computer used by the user for experimenting with the VPN.

UM2347 Rev 2 45/60

UM2347 Using the EMnify VPN

The application server runs on another host than the OpenVPN® client

In such a case, the application server runs on a host located in the public Internet.

Thanks to a port redirection, the lab PC routes and possibly captures the traffic between the
client and the server.

For using the lab PC as a relay to the Ubidots MQTT server, the following function is an
example that redirects the network packets:

$ socat tcp4-listen:8000,reuseaddr,fork tcp:things.ubidots.com:8883

The MQTT client must point to <IP of the tun0 interface>:8000.

The lab PC is not resolved by the DNS of the cellular device, meaning that the TLS server
authentication is not possible. As a result, the server certificate verification by mbedTLS
must be skipped by setting the tls_server_noverification socket option.

Wireshark® can capture the traffic that socat redirects to the remote application server as
illustrated in Figure 23.

Figure 23. Traffic capture topology

MQTT Ubidots application UM2347

46/60 UM2347 Rev 2

14 MQTT Ubidots application

14.1 Application description

The MQTT Ubidots application is derived from the Generic MQTT application with a few
changes to allow the connection to the Ubidots cloud MQTT server.

It connects to Ubidots IoT cloud through the MQTT protocol with the credentials provided by
the user. When the User button is pushed, it sends a LED toggle command to the IoT Cloud
endpoint, which returns the message to the board and triggers the LED toggle.

The C pre-processor define UBIDOTS_MQTT must be defined before compiling the
Generic MQTT application. This changes some topic strings and payload content format
when posting data to the Ubidots MQTT server.

In addition, the application configuration string is specific to Ubidots MQTT (refer to
Section 14.4).

14.2 Account creation

The account for MQTT Ubidots is the same as for HTTPS Ubidots:

• If an account has already been created for HTTPS Ubidots, use it for MQTT Ubidots.
Refer to Chapter 18: HTTPS Ubidots application for details.

• If no account exists already, connect with a web browser to the Ubidots for Education
web site and create an account by providing an email and a password.

Make sure to avoid a possible confusion with Ubidots for industry web site:

• Ubidots offers different services:

– Ubidots, which is for industry and business

– Ubidots for Education

• The application works with the Ubidots for Education service

• To get access to the Ubidots for Education web site, open a web browser on the
Ubidots site, and select Industries / Education.

Once the account is created, login to the Ubidots for Education web site.

14.3 Device creation

For the device creation, apply the following:

1. In the top-right menu, click on Devices and add a device using the + button.

2. Give the device a name, for instance iotboard.

3. Click on API Label and enter a label, for instance 1234; Take note of the device API
label.

For the security token, apply the following:

1. On the top-right of the screen, click on the account name to open the account menu.

2. In the account menu, click on API credentials; Take note of the Default token on the
right.

3. Copy-paste the default token in a text file. Do not copy the API key on the left.

UM2347 Rev 2 47/60

UM2347 MQTT Ubidots application

14.4 Application first launch

1. Compile the application with #define UBIDOTS_MQTT activated: uncomment it in file
GenericMQTTXcubeSample.c.

2. Flash the board with the compiled application and start it. Connect to the USB COM
port of the board with a serial terminal.

3. When asked, enter the device security parameters or credentials:

– Enter the GenericMQTT configuration string of the MQTT generic application
presented in Chapter 11 on page 27, making sure that device_API_label and
Default_Token are replaced with the appropriate values):

HostName=things.ubidots.com;HostPort=8883;ConnSecurity=2;MQC
lientId=device_API_label;MQUserName=Default_Token;MQUserPwd=

– Enter the TLS security certificate available in
Projects\Common\Ubidots\ DSTRootCAX3_comodo.pem.

The certificate is the same as for the Ubidots HTTPs application presented in
Chapter 18 on page 56.

14.5 Application runtime

By default, the Ubidots application automatically tries to connect to the Ubidots cloud
through the MQTT protocol by using the parameters set in Section 14.4.

Once connected, a single push on the User button (blue button) triggers a publish of the
sensor values and timestamp to the cloud.

A double push on the User button starts the publication loop mode. Values are sent at
regular intervals. Double push again the User button to exit from the publication loop mode.

14.6 Dashboard use

On the Ubidots web site, in a device window, it is possible to see the graphs of the variables
when they change over time. It is also possible to create a dashboard by clicking on
Dashboards top-right in the main menu.

Click on the + icon to add a widget. For example, select Chart type / Line chart, then add a
variable to be monitored.

Note: It is easier to configure a dashboard when using the B-L475E-IOT01A board because of the
multiple variables coming from the various sensors.

MQTT Litmus Loop application UM2347

48/60 UM2347 Rev 2

15 MQTT Litmus Loop application

15.1 Application description

The MQTT Litmus Loop application is derived from the generic MQTT application with a few
changes to allow the connection to the Litmus Loop platform.

The application connects to the Litmus Loop platform through the MQTT protocol with the
credentials provided by the user.

Both the MQTT plain TCP and MQTT TLS/SSL device models are supported by the
platform and the client application.

15.2 Configuration at server level

Connect to https://litmusautomation.com/ and select Try Loop.

To create the Litmus Loop environment, at server level, refer to the Getting Started Guide
from Litmus at https://docs.litmusautomation.com.

15.3 Configuration at client level

Before building, define the LITMUS_LOOP preprocessor variable in file
GenericMQTTXcubeSample.c by uncommenting it. This changes some topic strings and
payload content formats for data posted to the Litmus Loop platform, making the data
publication format compatible with the Litmus Loop platform so that the Litmus Loop
dashboard can be fully exploited.

The Litmus Loop platform uses IPSO objects format. The IPSO Alliance is an organization
promoting the Internet Protocol (IP) for what it calls smart object communications.

The client subscribes to topic loop/req/<LoopTopicId>/json in order to receive commands.

The client publishes to topic loop/data/<LoopTopicId>/json to publish its data.

< LoopTopicId > is a term defined for the Litmus Loop STMicroelectronics application (it
does not exist on the Limus Loop server side), representing the concatenation of two strings
provided by Litmus at device creation. It is built as <client ID>/<another Litmus
Loop key>.

For example:

• If Litmus has defined the device with:

"mqttReqTopicName":
"loop/req/1ntalsl12345q4r5rr06x0ya5/ea9wkabcdekotufrzkef7su2j/json"

• <LoopTopicId> must be:

1ntalsl12345q4r5rr06x0ya5/ea9wkabcdekotufrzkef7su2j

The application configuration string is specific to Litmus Loop as it adds the
<LoopTopicId> at the end.

UM2347 Rev 2 49/60

UM2347 MQTT Litmus Loop application

15.4 Application first launch

Except for the <LoopTopicId> parameter added at the end of the connection string, the
steps are the same as in Section 11.4: Application first launch on page 31 in Chapter 11:
MQTT generic application.

15.5 Application runtime launch

The steps are the same as in Section 11.5: Application runtime on page 33 in Chapter 11:
MQTT generic application. The commands are also the same while topic names are
different as mentioned in Section 15.3: Configuration at client level.

15.6 Web Litmus Loop interface

The web Litmus Loop interface can be used to publish commands to the client, subscribe to
response from the client, or using a dashboard to visualize the published data.

HTTPS Exosite application UM2347

50/60 UM2347 Rev 2

16 HTTPS Exosite application

16.1 Application description

The application shows a basic use of Exosite IoT cloud using the HTTP REST API.

16.2 Account creation

Create an account on the Exosite web site by clicking on Sign up and providing an email
address and a password.

16.3 Device creation

1. Log on the Exosite web site.

2. Create a product, for example iotcloud.

3. Configure the product so that the device connects through HTTPS with a token.

For Device Identity Format, don't enforce a device prefix.

4. Select the product.

Take note of the product/solution ID. It is obtained by clicking on the small green ID icon
on the top-left of the product page and selecting Copy solution ID. The ID icon is shown
in Figure 24. The ID is later needed for the configuration of the device. Beware of a
possible confusion with the product name that must be avoided.

UM2347 Rev 2 51/60

UM2347 HTTPS Exosite application

Figure 24. Exosite product ID

5. Click first on Devices, then on New Device(s) / Add one device.

a) Fill Identity with a device name

b) No prefix is needed. It is not needed either to restrict the activation period

c) Confirm with the Add button

6. In the device list, click on the new device menu represented by three vertical dots on
the right. Select Set Authentication key. Take note of the randomly-generated token.
The token is later needed for device configuration.

7. LED resource: in the resources tab, create a resource named Led with the boolean
type.

16.4 Application first launch

1. Flash the board with the compiled application. Connect to the USB COM port of the
board with a serial terminal.

2. If needed, enter the network settings.

3. Enter the device security parameters and credentials:

– Enter the Product ID as indicated in the Exosite web site

– Enter the device token/CIK noted previously (refer to Section 16.3)

– Enter the TLS security certificate available in
Projects\Common\Exosite\DigiCert_Comodo.pem

HTTPS Exosite application UM2347

52/60 UM2347 Rev 2

16.5 Application runtime

Once correctly configured, the application connects to the Exosite cloud. It requests the
value of the Led resource every few seconds.

Press the User button (blue button) once to toggle the Led status and send the new value to
the Exosite Cloud.

Press the User button twice to end the application.

On the B-L475E-IOT01A board, the application collects the board sensor values every ten
to fifteen seconds and sends them to the Exosite cloud. This is needed to create the
corresponding resources in the Exosite cloud so that the values are visible afterwards.

The resources sent by the B-L475E-IOT01A board to the Exosite cloud are the following:

• Temperature

• Humidity

• Pressure

• Proximity

• Acc_x

• Acc_y

• Acc_z

• Gyr_x

• Gyr_y

• Gyr_z

• Mag_x

• Mag_y

• Mag_z

16.6 Dashboard use

The resource values are visible on the Exosite cloud by clicking on the device name.

The log of resource changes is visible in Logs.

UM2347 Rev 2 53/60

UM2347 HTTPS Grovestreams application

17 HTTPS Grovestreams application

17.1 Application description

The application shows the basic use of the Grovestreams IoT cloud with the HTTP REST
API.

The application regularly gets the LED status from the cloud. If the User button is pressed,
the LED status is changed between On and Off. The application reads the LED status from
the cloud and changes the LED status on the board.

17.2 Account creation

1. Open a web browser window on the Grovestreams web site and create an account by
selecting Sign up

2. Sign-in with the created account

3. Create an Organization and enter it

17.3 Device creation

Component creation:

1. In Observation Studio, create a Component by right-clicking on the Components folder
and selecting New Component

2. Give the component a name, for example iotboard

3. Enter a component ID, for instance 1234. Take note of the component ID, which is
needed afterwards during board configuration. Beware of a possible confusion with the
component name.

Led stream creation:

1. Right-click on the component and select Edit component

2. In Streams, create a Led stream with:

– Name: Led

– ID: Led

– Type: Boolean

– No specific Unit

The application uses Stream ID Led to publish the LED status in the Led stream.

HTTPS Grovestreams application UM2347

54/60 UM2347 Rev 2

API key:

1. In the top menu, select Admin / API key

2. In the API keys box, click on + to create a new key

3. Give the key a name such as Put/get key, and an ID such as PUT_GET_KEY

4. In Resources, click on Add Type and add Component/*/feed as well as type
Component/*/stream

For both types, thick the check-boxes to allow PUT and GET actions.

5. Click on Save to exit the API key box.

API key steps 1 to 5 are illustrated in Figure 25.

Figure 25. Grovestreams API key configuration

6. Select the API key just created, and click on the View secret key button

7. Note the API secret key that is displayed for later use (refer to Section 17.4) and close
the box

UM2347 Rev 2 55/60

UM2347 HTTPS Grovestreams application

17.4 Application first launch

1. Flash the board with the compiled application. Connect to the USB COM port of the
board with a serial terminal.

2. When asked, enter the device security parameters or credentials:

– Enter the API key noted previously (refer to Section 17.3)

– Enter the component ID as noted previously (refer to Section 17.3). Beware of a
possible confusion with the component name.

– Enter the TLS security certificate available in
Projects\Common\Grovestreams\godaddy_comodo.pem

17.5 Application runtime

By default, the Grovestreams application tries to connect to the Grovestreams cloud using
the parameters set as described in Section 17.4.

Push the User button (blue button) to change the LED value and send it to the cloud. After a
few seconds, the application reads it back from the cloud and makes the LED change
accordingly.

In the case of the B-L475E-IOT01A board, the board sensor values are sent every ten to
twenty seconds to the cloud.

17.6 Dashboard use

1. In Observation Studio, click on Dashboards

2. In the Dashboards view, click on contents, then right-click on New / Dashboard

3. Enter Dashboard settings and add a stream to view.

Note: It is easier to configure a dashboard when using the B-L475E-IOT01A board because of the
multiple variables coming from the various sensors.

HTTPS Ubidots application UM2347

56/60 UM2347 Rev 2

18 HTTPS Ubidots application

18.1 Application description

The application connects to Ubidots IoT Cloud through the HTTP REST API with the
credentials provided by the user. When the User button is pushed, it sends a LED toggle
command to the IoT Cloud endpoint, which returns the message to the board and triggers
the LED toggle.

Ubidots offers different services: Ubidots and Ubidots for Education. The application works
with Ubidots for Education.

To get access to the Ubidots for Education web site, open a web browser on the Ubidots site
and select Industries / Education.

18.2 Account creation

The account for HTTPS Ubidots is the same as for MQTT Ubidots:

• If an account has already been created for MQTT Ubidots, use it for HTTPS Ubidots.
Refer to Chapter 14: MQTT Ubidots application for details.

• If no account exists already, connect with a web browser to the Ubidots for Education
web site and create an account by providing an email and a password.

Make sure to avoid a possible confusion with Ubidots for industry web site:

• Ubidots offers different services:

– Ubidots, which is for industry and business

– Ubidots for Education

• The application works with the Ubidots for Education service

• To get access to the Ubidots for Education web site, open a web browser on the
Ubidots site, and select Industries / Education.

Once the account is created, login to the Ubidots for Education web site.

18.3 Device creation

For the device creation, apply the following:

1. In the top-right menu, click on Devices and add a device using the + button.

2. Give the device a name, for instance iotboard.

3. Click on API Label and enter a label, for instance 1234; Take note of the device API
label.

For the security token, apply the following:

1. On the top-right of the screen, click on the account name to open the account menu.

2. In the account menu, click on API credentials; Take note of the Default token on the
right.

3. Copy-paste the default token in a text file. Do not copy the API key on the left.

UM2347 Rev 2 57/60

UM2347 HTTPS Ubidots application

18.4 Application first launch

1. Flash the board with the compiled application

2. Connect to the board USB COM port with a serial terminal

3. Enter the device security parameters or credentials:

a) Enter the API Label of the device

b) Enter the default token noted previously (refer to Section 18.3).
Do not enter the API key

c) Enter the TLS security certificate available in
Projects\Common\Ubidots\ DSTRootCAX3_comodo.pem

18.5 Application runtime

By default, the Ubidots application automatically tries to connect to Ubidots cloud using the
parameters set in Section 18.4.

Push the User button (blue button) to toggle the LED value and send it to the cloud. After a
few seconds, the application reads it back from the cloud and changes the LED status
accordingly.

In the case of B-L475E-IOT01A board, the sensor values are sent every ten to twenty
seconds to the cloud.

18.6 Dashboard use

On the Ubidots web site, in a device window, it is possible to see the graphs of the variables
when they change over time. It is also possible to create a dashboard by clicking on
Dashboards top-right in the main menu.

Click on the + icon to add a widget. For example, select Chart type / Line chart, then add a
variable to be monitored.

Note: It is easier to configure a dashboard when using the B-L475E-IOT01A board because of the
multiple variables coming from the various sensors.

Frequently asked questions UM2347

58/60 UM2347 Rev 2

19 Frequently asked questions

Q: Why do I get this pop-up (refer to Figure 26) when I open the project with IAR™?

Figure 26. Pop-up when the IAR™ IDE version is not compatible with
the one used for X-CUBE-CLD-GEN

A: It is very likely that the IAR™ IDE version is older than the one used to develop the
package (refer to the release notes available in the package root folder for the IDE
versions supported), hence the compatibility is not ensured. In this case, the IAR™ IDE
version needs to be updated.

Q: My device does not connect to the Wi-Fi® access point. How shall I proceed?

A: Make sure that another device can connect to the Wi-Fi® access point. If it can, enter the
Wi-Fi® credentials by pressing the User button (blue) up to five seconds after board
reset.

Q: The proximity sensor always reports "8190" even if I place an obstacle close to it.

A: Make sure that the liner (which is a very thin film placed on the proximity sensor) has
been removed. Its color is orange and it is not very visible.

UM2347 Rev 2 59/60

UM2347 Revision history

20 Revision history

Table 8. Document revision history

Date Revision Changes

5-Apr-2018 1 Initial release.

19-Apr-2018 2

Updated:

– Section 10.3: Running the application, item 2 for
EMnify conditions and item 3 for EMnify API naming.

– Section 11.4: Application first launch, item 6 for
EMnify API naming.

– Section 14.5: Application runtime, for LED behavior.

UM2347

60/60 UM2347 Rev 2

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

	1 General information
	Table 1. List of acronyms

	2 X-CUBE-CLD-GEN IoT ecosystem
	Figure 1. X-CUBE-CLD-GEN IoT ecosystem

	3 Package description
	3.1 General description
	3.2 Architecture
	Figure 2. X-CUBE-CLD-GEN software architecture

	3.3 Folder structure
	Figure 3. Project file structure

	3.4 B-L475E-IOT01A board sensors
	3.5 Wi-Fi components
	3.6 Cellular components
	3.7 Reset push-button
	3.8 User push-button
	3.9 User LED
	3.10 Real-time clock
	3.11 mbedTLS configuration

	4 Hardware and software environment setup
	Figure 4. Hardware and software setup environment

	5 Application build and flash
	6 Interacting with the boards
	Figure 5. Terminal setup
	Figure 6. Serial port setup

	7 B-L475E-IOT01A board
	7.1 Board capabilities
	7.2 Inventek module hardware interface
	Table 2. Inventek module hardware interface

	7.3 Published data
	Table 3. Units for the values reported by the sensors of the B-L475E-IOT01A board

	7.4 Running the application

	8 32F413HDISCOVERY board
	9 32F769IDISCOVERY board
	10 P-L496G-CELL01 and P-L496G-CELL02 packs
	10.1 Board capabilities
	10.2 Module hardware interface
	Table 4. Quectel module hardware control interface
	Table 5. Quectel module SIM selection interface

	10.3 Running the application

	11 MQTT generic application
	11.1 Application description
	11.2 User configuration
	Table 6. Configurations without MQTT authentication
	Table 7. Configurations with MQTT authentication

	11.3 Hosting an own MQTT broker
	11.4 Application first launch
	11.5 Application runtime

	12 Node-RED as a dashboard for the MQTT generic application
	12.1 Installation
	12.2 Flow configuration
	Figure 7. Node-RED dashboard: flow import (1/2)
	Figure 8. Node-RED dashboard: flow import (2/2)
	Figure 9. Node-RED dashboard flow anatomy: network connectors
	Figure 10. Node-RED dashboard flow anatomy: widgets

	12.3 Flow customization
	Figure 11. Node-RED dashboard: MQTT/TLS node configuration
	Figure 12. Node-RED dashboard: flow deployment

	12.4 Dashboard display
	Figure 13. Node-RED dashboard: link to the dashboard
	Figure 14. Node-RED dashboard: clear dashboard
	Figure 15. Node-RED dashboard: updating dashboard

	12.5 Under the hood
	Figure 16. Cartesian to spherical coordinates conversion function
	Figure 17. Node-RED dashboard: trace activation
	Figure 18. Node-RED dashboard: debug tab

	12.6 Network architecture examples
	Figure 19. Local self-hosted services
	Figure 20. Remote managed services
	Figure 21. Remote self-hosted services

	12.7 References

	13 Using the EMnify VPN
	Figure 22. EMnify VPN menu
	Figure 23. Traffic capture topology

	14 MQTT Ubidots application
	14.1 Application description
	14.2 Account creation
	14.3 Device creation
	14.4 Application first launch
	14.5 Application runtime
	14.6 Dashboard use

	15 MQTT Litmus Loop application
	15.1 Application description
	15.2 Configuration at server level
	15.3 Configuration at client level
	15.4 Application first launch
	15.5 Application runtime launch
	15.6 Web Litmus Loop interface

	16 HTTPS Exosite application
	16.1 Application description
	16.2 Account creation
	16.3 Device creation
	Figure 24. Exosite product ID

	16.4 Application first launch
	16.5 Application runtime
	16.6 Dashboard use

	17 HTTPS Grovestreams application
	17.1 Application description
	17.2 Account creation
	17.3 Device creation
	Figure 25. Grovestreams API key configuration

	17.4 Application first launch
	17.5 Application runtime
	17.6 Dashboard use

	18 HTTPS Ubidots application
	18.1 Application description
	18.2 Account creation
	18.3 Device creation
	18.4 Application first launch
	18.5 Application runtime
	18.6 Dashboard use

	19 Frequently asked questions
	Figure 26. Pop-up when the IAR™ IDE version is not compatible with the one used for X-CUBE-CLD-GEN

	20 Revision history
	Table 8. Document revision history

