/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2024 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "dma.h" #include "spi.h" #include "usart.h" #include "gpio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "stdio.h" #include "string.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ #define PL_PIN GPIO_PIN_0 #define PL_PORT GPIOB #define CE_PIN GPIO_PIN_1 #define CE_PORT GPIOB /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); /* USER CODE BEGIN PFP */ uint8_t read74HC165(void); uint8_t read74HC165_SPI(void); uint16_t readTwo74HC165_SPI(void); void printBinary(uint8_t data, char* buffer, size_t size); void printBinary16(uint16_t value); /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_USART1_UART_Init(); MX_SPI1_Init(); /* USER CODE BEGIN 2 */ /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { // Read data from 74HC165 //uint8_t inputData = read74HC165_SPI(); // Print data to UART in binary format //char buffer[20]; // Sufficient buffer size to hold the binary string //printBinary(inputData, buffer, sizeof(buffer)); uint16_t inputData = readTwo74HC165_SPI(); printBinary16(inputData); //HAL_UART_Transmit(&huart1, (uint8_t*)buffer, strlen(buffer), HAL_MAX_DELAY); //HAL_Delay(1000); /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ uint8_t read74HC165(void) { uint8_t data = 0; // Load data from parallel input pins HAL_GPIO_WritePin(GPIOB, GPIO_PIN_1, RESET); HAL_Delay(1); HAL_GPIO_WritePin(GPIOB, GPIO_PIN_1, SET); HAL_Delay(1); // Read 8 bits from the shift register for (int i = 0; i < 8; i++) { data |= HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_6) << (7 - i); HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, SET); HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, RESET); } return data; } uint8_t read74HC165_SPI(void) { uint8_t data = 0; // Load data from parallel input pins HAL_GPIO_WritePin(PL_PORT, PL_PIN, GPIO_PIN_RESET); HAL_Delay(1); // Small delay for stability HAL_GPIO_WritePin(PL_PORT, PL_PIN, GPIO_PIN_SET); HAL_Delay(1); // Small delay for stability // Enable the 74HC165 HAL_GPIO_WritePin(CE_PORT, CE_PIN, GPIO_PIN_RESET); // Receive 8 bits from the shift register using SPI HAL_SPI_Receive(&hspi1, &data, 1, HAL_MAX_DELAY); // Disable the 74HC165 HAL_GPIO_WritePin(CE_PORT, CE_PIN, GPIO_PIN_SET); return data; } uint16_t readTwo74HC165_SPI(void) { uint8_t data[2] = {0}; uint8_t dummy = 0xFF; // Dummy data to generate clock pulses // Load data from parallel input pins HAL_GPIO_WritePin(PL_PORT, PL_PIN, GPIO_PIN_RESET); HAL_Delay(1); // Small delay for stability HAL_GPIO_WritePin(PL_PORT, PL_PIN, GPIO_PIN_SET); HAL_Delay(1); // Small delay for stability // Enable the 74HC165 HAL_GPIO_WritePin(CE_PORT, CE_PIN, GPIO_PIN_RESET); // Send dummy data and receive 16 bits from the shift registers using SPI if (HAL_SPI_TransmitReceive(&hspi1, &dummy, data, 2, HAL_MAX_DELAY) != HAL_OK) { // Communication Error Error_Handler(); } // Disable the 74HC165 HAL_GPIO_WritePin(CE_PORT, CE_PIN, GPIO_PIN_SET); // Combine the two bytes into a single 16-bit value uint16_t result = (data[0] << 8) | data[1]; return result; } void printBinary(uint8_t data, char* buffer, size_t size) { // Ensure buffer size is sufficient if (size < 12) { // "Data: 0b" + 8 bits + "\r\n" + null terminator return; } snprintf(buffer, size, "Data: 0b"); for (int i = 7; i >= 0; i--) { snprintf(buffer + strlen(buffer), size - strlen(buffer), "%d", (data & (1 << i)) ? 1 : 0); } strcat(buffer, "\r\n"); // Use strcat to append "\r\n" } void printBinary16(uint16_t value) { char buffer[20] = {0}; // Increased buffer size to accommodate binary string and newline characters for (int i = 0; i < 16; i++) { buffer[15 - i] = (value & (1 << i)) ? '1' : '0'; } buffer[16] = '\r'; buffer[17] = '\n'; HAL_UART_Transmit(&huart1, (uint8_t*)buffer, 18, HAL_MAX_DELAY); } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */