/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2024 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "stdio.h" #include #include #include #include #include #include #include #include "stm32h7xx_hal.h" // Dostosuj do swojego modelu STM32 #include /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ FDCAN_HandleTypeDef hfdcan1; FDCAN_HandleTypeDef hfdcan2; RTC_HandleTypeDef hrtc; TIM_HandleTypeDef htim2; TIM_HandleTypeDef htim3; TIM_HandleTypeDef htim4; TIM_HandleTypeDef htim5; TIM_HandleTypeDef htim12; /* USER CODE BEGIN PV */ // FDCAN2 Defines /* USER CODE BEGIN PV */ FDCAN_TxHeaderTypeDef TxHeader; FDCAN_RxHeaderTypeDef RxHeader; HAL_FDCAN_StateTypeDef myCanState; HAL_StatusTypeDef myState; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_FDCAN1_Init(void); static void MX_RTC_Init(void); static void MX_FDCAN2_Init(void); static void MX_TIM2_Init(void); static void MX_TIM3_Init(void); static void MX_TIM4_Init(void); static void MX_TIM5_Init(void); static void MX_TIM12_Init(void); /* USER CODE BEGIN PFP */ #define LED1_ON() HAL_GPIO_WritePin(GPIOI, GPIO_PIN_8, GPIO_PIN_RESET) #define LED2_ON() HAL_GPIO_WritePin(GPIOC, GPIO_PIN_15, GPIO_PIN_RESET) #define LED1_OFF() HAL_GPIO_WritePin(GPIOI, GPIO_PIN_8, GPIO_PIN_SET) #define LED2_OFF() HAL_GPIO_WritePin(GPIOC, GPIO_PIN_15, GPIO_PIN_SET) /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ #define BUFFER_SIZE 512 typedef struct { FDCAN_TxHeaderTypeDef headers[BUFFER_SIZE]; uint8_t data[BUFFER_SIZE][8]; // Zakładamy maksymalny rozmiar danych CAN int head; int tail; int count; } CAN_RingBuffer; CAN_RingBuffer can1RxBuffer; CAN_RingBuffer can2RxBuffer; void ProcessCANFrames(void); void SetupCAN1Filters(void); void SetupCAN2Filters(void); void HAL_FDCAN_RxFifo0Callback(FDCAN_HandleTypeDef *hfdcan, uint32_t RxFifo0ITs); void handleIndicatorSignals(); void handleError(uint32_t id); void handleCANReadError(HAL_StatusTypeDef status); void RingBuffer_Init(CAN_RingBuffer *buffer) { memset(buffer, 0, sizeof(CAN_RingBuffer)); } bool RingBuffer_Add(CAN_RingBuffer *buffer, FDCAN_TxHeaderTypeDef *header, uint8_t *data) { if (buffer->count < BUFFER_SIZE) { buffer->headers[buffer->tail] = *header; memcpy(buffer->data[buffer->tail], data, 8); buffer->tail = (buffer->tail + 1) % BUFFER_SIZE; buffer->count++; return true; } return false; } int RingBuffer_Get(CAN_RingBuffer *buffer, FDCAN_TxHeaderTypeDef *header, uint8_t *data) { if (buffer->count > 0) { *header = buffer->headers[buffer->head]; memcpy(data, buffer->data[buffer->head], 8); buffer->head = (buffer->head + 1) % BUFFER_SIZE; buffer->count--; return 1; } return 0; } void convertRxToTxHeader(FDCAN_RxHeaderTypeDef *rxHeader, FDCAN_TxHeaderTypeDef *txHeader) { txHeader->Identifier = rxHeader->Identifier; txHeader->IdType = rxHeader->IdType; txHeader->TxFrameType = FDCAN_FRAME_CLASSIC; // lub inny odpowiedni typ ramki txHeader->DataLength = rxHeader->DataLength; txHeader->ErrorStateIndicator = rxHeader->ErrorStateIndicator; txHeader->BitRateSwitch = rxHeader->BitRateSwitch; txHeader->FDFormat = rxHeader->FDFormat; txHeader->TxEventFifoControl = FDCAN_NO_TX_EVENTS; // lub odpowiednie ustawienie } void ProcessCAN1Frame(FDCAN_TxHeaderTypeDef *header, uint8_t *data) { HAL_FDCAN_AddMessageToTxFifoQ(&hfdcan2, header, data); } void ProcessCAN2Frame(FDCAN_TxHeaderTypeDef *header, uint8_t *data) { HAL_FDCAN_AddMessageToTxFifoQ(&hfdcan1, header, data); } void ProcessCANFrames(void) { // Procesuje ramki z CAN1 do CAN2 while (RingBuffer_Get(&can1RxBuffer, &header, data)) { ProcessCAN1Frame(&header, data); } // Procesuje ramki z CAN2 do CAN1 while (RingBuffer_Get(&can2RxBuffer, &header, data)) { ProcessCAN2Frame(&header, data); } } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ RingBuffer_Init(&can1RxBuffer); RingBuffer_Init(&can2RxBuffer); /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_FDCAN1_Init(); MX_RTC_Init(); MX_FDCAN2_Init(); MX_TIM2_Init(); MX_TIM3_Init(); MX_TIM4_Init(); MX_TIM5_Init(); MX_TIM12_Init(); /* USER CODE BEGIN 2 */ // STart FDCAN2 HAL_TIM_Base_Start_IT(&htim2); HAL_TIM_Base_Start_IT(&htim3); HAL_TIM_Base_Start_IT(&htim4); HAL_TIM_Base_Start_IT(&htim5); HAL_TIM_Base_Start_IT(&htim12); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { ProcessCANFrames(); // Przetwarzanie ramek CAN } /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Supply configuration update enable */ HAL_PWREx_ConfigSupply(PWR_LDO_SUPPLY); /** Configure the main internal regulator output voltage */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {} __HAL_RCC_SYSCFG_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE0); while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {} /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI|RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.LSIState = RCC_LSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 5; RCC_OscInitStruct.PLL.PLLN = 192; RCC_OscInitStruct.PLL.PLLP = 2; RCC_OscInitStruct.PLL.PLLQ = 8; RCC_OscInitStruct.PLL.PLLR = 2; RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_2; RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOWIDE; RCC_OscInitStruct.PLL.PLLFRACN = 0; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2 |RCC_CLOCKTYPE_D3PCLK1|RCC_CLOCKTYPE_D1PCLK1; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB3CLKDivider = RCC_APB3_DIV2; RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV2; RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV2; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK) { Error_Handler(); } } /** * @brief FDCAN1 Initialization Function * @param None * @retval None */ static void MX_FDCAN1_Init(void) { /* USER CODE BEGIN FDCAN1_Init 0 */ /* USER CODE END FDCAN1_Init 0 */ /* USER CODE BEGIN FDCAN1_Init 1 */ /* USER CODE END FDCAN1_Init 1 */ hfdcan1.Instance = FDCAN1; hfdcan1.Init.FrameFormat = FDCAN_FRAME_FD_NO_BRS; hfdcan1.Init.Mode = FDCAN_MODE_NORMAL; hfdcan1.Init.AutoRetransmission = ENABLE; hfdcan1.Init.TransmitPause = DISABLE; hfdcan1.Init.ProtocolException = DISABLE; hfdcan1.Init.NominalPrescaler = 15; hfdcan1.Init.NominalSyncJumpWidth = 3; hfdcan1.Init.NominalTimeSeg1 = 13; hfdcan1.Init.NominalTimeSeg2 = 2; hfdcan1.Init.DataPrescaler = 15; hfdcan1.Init.DataSyncJumpWidth = 1; hfdcan1.Init.DataTimeSeg1 = 13; hfdcan1.Init.DataTimeSeg2 = 2; hfdcan1.Init.MessageRAMOffset = 0; hfdcan1.Init.StdFiltersNbr = 128; hfdcan1.Init.ExtFiltersNbr = 64; hfdcan1.Init.RxFifo0ElmtsNbr = 64; hfdcan1.Init.RxFifo0ElmtSize = FDCAN_DATA_BYTES_8; hfdcan1.Init.RxFifo1ElmtsNbr = 0; hfdcan1.Init.RxFifo1ElmtSize = FDCAN_DATA_BYTES_8; hfdcan1.Init.RxBuffersNbr = 0; hfdcan1.Init.RxBufferSize = FDCAN_DATA_BYTES_8; hfdcan1.Init.TxEventsNbr = 0; hfdcan1.Init.TxBuffersNbr = 0; hfdcan1.Init.TxFifoQueueElmtsNbr = 32; hfdcan1.Init.TxFifoQueueMode = FDCAN_TX_FIFO_OPERATION; hfdcan1.Init.TxElmtSize = FDCAN_DATA_BYTES_8; if (HAL_FDCAN_Init(&hfdcan1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN FDCAN1_Init 2 */ SetupCAN1Filters(); if(HAL_FDCAN_Start(&hfdcan1) != HAL_OK) { Error_Handler(); } if(HAL_FDCAN_ActivateNotification(&hfdcan1, FDCAN_IT_RX_FIFO0_NEW_MESSAGE, 0) != HAL_OK) { Error_Handler(); } /* USER CODE END FDCAN1_Init 2 */ } /** * @brief FDCAN2 Initialization Function * @param None * @retval None */ static void MX_FDCAN2_Init(void) { /* USER CODE BEGIN FDCAN2_Init 0 */ /* USER CODE END FDCAN2_Init 0 */ /* USER CODE BEGIN FDCAN2_Init 1 */ /* USER CODE END FDCAN2_Init 1 */ hfdcan2.Instance = FDCAN2; hfdcan2.Init.FrameFormat = FDCAN_FRAME_FD_NO_BRS; hfdcan2.Init.Mode = FDCAN_MODE_NORMAL; hfdcan2.Init.AutoRetransmission = ENABLE; hfdcan2.Init.TransmitPause = DISABLE; hfdcan2.Init.ProtocolException = DISABLE; hfdcan2.Init.NominalPrescaler = 15; hfdcan2.Init.NominalSyncJumpWidth = 3; hfdcan2.Init.NominalTimeSeg1 = 13; hfdcan2.Init.NominalTimeSeg2 = 2; hfdcan2.Init.DataPrescaler = 15; hfdcan2.Init.DataSyncJumpWidth = 1; hfdcan2.Init.DataTimeSeg1 = 13; hfdcan2.Init.DataTimeSeg2 = 2; hfdcan2.Init.MessageRAMOffset = 1280; hfdcan2.Init.StdFiltersNbr = 128; hfdcan2.Init.ExtFiltersNbr = 64; hfdcan2.Init.RxFifo0ElmtsNbr = 64; hfdcan2.Init.RxFifo0ElmtSize = FDCAN_DATA_BYTES_8; hfdcan2.Init.RxFifo1ElmtsNbr = 0; hfdcan2.Init.RxFifo1ElmtSize = FDCAN_DATA_BYTES_8; hfdcan2.Init.RxBuffersNbr = 0; hfdcan2.Init.RxBufferSize = FDCAN_DATA_BYTES_8; hfdcan2.Init.TxEventsNbr = 0; hfdcan2.Init.TxBuffersNbr = 0; hfdcan2.Init.TxFifoQueueElmtsNbr = 32; hfdcan2.Init.TxFifoQueueMode = FDCAN_TX_FIFO_OPERATION; hfdcan2.Init.TxElmtSize = FDCAN_DATA_BYTES_8; if (HAL_FDCAN_Init(&hfdcan2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN FDCAN2_Init 2 */ if(HAL_FDCAN_ActivateNotification(&hfdcan2, FDCAN_IT_RX_FIFO0_NEW_MESSAGE, 0) != HAL_OK) { Error_Handler(); } if(HAL_FDCAN_Start(&hfdcan2) != HAL_OK) { Error_Handler(); } /* USER CODE END FDCAN2_Init 2 */ } /** * @brief RTC Initialization Function * @param None * @retval None */ static void MX_RTC_Init(void) { /* USER CODE BEGIN RTC_Init 0 */ /* USER CODE END RTC_Init 0 */ /* USER CODE BEGIN RTC_Init 1 */ /* USER CODE END RTC_Init 1 */ /** Initialize RTC Only */ hrtc.Instance = RTC; hrtc.Init.HourFormat = RTC_HOURFORMAT_24; hrtc.Init.AsynchPrediv = 127; hrtc.Init.SynchPrediv = 255; hrtc.Init.OutPut = RTC_OUTPUT_DISABLE; hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH; hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN; hrtc.Init.OutPutRemap = RTC_OUTPUT_REMAP_NONE; if (HAL_RTC_Init(&hrtc) != HAL_OK) { Error_Handler(); } /** Enable the WakeUp */ if (HAL_RTCEx_SetWakeUpTimer(&hrtc, 0, RTC_WAKEUPCLOCK_RTCCLK_DIV16) != HAL_OK) { Error_Handler(); } /** Enable Calibrartion */ if (HAL_RTCEx_SetCalibrationOutPut(&hrtc, RTC_CALIBOUTPUT_1HZ) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN RTC_Init 2 */ /* USER CODE END RTC_Init 2 */ } /** * @brief TIM2 Initialization Function * @param None * @retval None */ static void MX_TIM2_Init(void) { /* USER CODE BEGIN TIM2_Init 0 */ /* USER CODE END TIM2_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM2_Init 1 */ /* USER CODE END TIM2_Init 1 */ htim2.Instance = TIM2; htim2.Init.Prescaler = 240; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.Period = 59999; htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; if (HAL_TIM_Base_Init(&htim2) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM2_Init 2 */ /* USER CODE END TIM2_Init 2 */ } /** * @brief TIM3 Initialization Function * @param None * @retval None */ static void MX_TIM3_Init(void) { /* USER CODE BEGIN TIM3_Init 0 */ /* USER CODE END TIM3_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM3_Init 1 */ /* USER CODE END TIM3_Init 1 */ htim3.Instance = TIM3; htim3.Init.Prescaler = 119; htim3.Init.CounterMode = TIM_COUNTERMODE_UP; htim3.Init.Period = 59999; htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; if (HAL_TIM_Base_Init(&htim3) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM3_Init 2 */ /* USER CODE END TIM3_Init 2 */ } /** * @brief TIM4 Initialization Function * @param None * @retval None */ static void MX_TIM4_Init(void) { /* USER CODE BEGIN TIM4_Init 0 */ /* USER CODE END TIM4_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM4_Init 1 */ /* USER CODE END TIM4_Init 1 */ htim4.Instance = TIM4; htim4.Init.Prescaler = 479; htim4.Init.CounterMode = TIM_COUNTERMODE_UP; htim4.Init.Period = 49999; htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; if (HAL_TIM_Base_Init(&htim4) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM4_Init 2 */ /* USER CODE END TIM4_Init 2 */ } /** * @brief TIM5 Initialization Function * @param None * @retval None */ static void MX_TIM5_Init(void) { /* USER CODE BEGIN TIM5_Init 0 */ /* USER CODE END TIM5_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM5_Init 1 */ /* USER CODE END TIM5_Init 1 */ htim5.Instance = TIM5; htim5.Init.Prescaler = 719; htim5.Init.CounterMode = TIM_COUNTERMODE_UP; htim5.Init.Period = 49999; htim5.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim5.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; if (HAL_TIM_Base_Init(&htim5) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim5, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim5, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM5_Init 2 */ /* USER CODE END TIM5_Init 2 */ } /** * @brief TIM12 Initialization Function * @param None * @retval None */ static void MX_TIM12_Init(void) { /* USER CODE BEGIN TIM12_Init 0 */ /* USER CODE END TIM12_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM12_Init 1 */ /* USER CODE END TIM12_Init 1 */ htim12.Instance = TIM12; htim12.Init.Prescaler = 239; htim12.Init.CounterMode = TIM_COUNTERMODE_UP; htim12.Init.Period = 49999; htim12.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim12.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; if (HAL_TIM_Base_Init(&htim12) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim12, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim12, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM12_Init 2 */ /* USER CODE END TIM12_Init 2 */ } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* USER CODE BEGIN MX_GPIO_Init_1 */ /* USER CODE END MX_GPIO_Init_1 */ /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOI_CLK_ENABLE(); __HAL_RCC_GPIOH_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(LED1_GPIO_Port, LED1_Pin, GPIO_PIN_RESET); /*Configure GPIO pin : LED1_Pin */ GPIO_InitStruct.Pin = LED1_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(LED1_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pins : H0_Pin H1_Pin */ GPIO_InitStruct.Pin = H0_Pin|H1_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(GPIOH, &GPIO_InitStruct); /*Configure GPIO pins : B1_Pin B0_Pin */ GPIO_InitStruct.Pin = B1_Pin|B0_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /* USER CODE BEGIN MX_GPIO_Init_2 */ /* USER CODE END MX_GPIO_Init_2 */ } /* USER CODE BEGIN 4 */ void HAL_FDCAN_RxFifo0Callback(FDCAN_HandleTypeDef *hfdcan, uint32_t RxFifo0ITs) { FDCAN_RxHeaderTypeDef rxHeader; FDCAN_TxHeaderTypeDef txHeader; uint8_t data[8]; HAL_StatusTypeDef status; // Obsługa wiadomości przychodzących while (HAL_FDCAN_GetRxFifoFillLevel(hfdcan, FDCAN_RX_FIFO0) > 0) { status = HAL_FDCAN_GetRxMessage(hfdcan, FDCAN_RX_FIFO0, &rxHeader, data); if (status == HAL_OK) { convertRxToTxHeader(&rxHeader, &txHeader); CAN_RingBuffer *buffer = (hfdcan->Instance == FDCAN1) ? &can1RxBuffer : &can2RxBuffer; if (!RingBuffer_Add(buffer, &txHeader, data)) { // Handle buffer overflow or error handleError(rxHeader.Identifier); } } else { // Handle read error handleCANReadError(status); } } } void handleError(uint32_t id) { LED1_ON(); // Sygnalizacja wizualna błędu MX_FDCAN1_Init(); MX_FDCAN2_Init(); } void handleCANReadError(HAL_StatusTypeDef status) { LED1_ON(); // Sygnalizacja wizualna błędu MX_FDCAN1_Init(); MX_FDCAN2_Init(); } /* USER CODE END 4 */ /** * @brief Period elapsed callback in non blocking mode * @note This function is called when TIM1 interrupt took place, inside * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment * a global variable "uwTick" used as application time base. * @param htim : TIM handle * @retval None */ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { /* USER CODE BEGIN Callback 0 */ /* USER CODE END Callback 0 */ if (htim->Instance == TIM1) { HAL_IncTick(); } /* USER CODE BEGIN Callback 1 */ //uint32_t currentTime = HAL_GetTick(); // Jeden wspólny odczyt dla wszystkich timerów if (htim->Instance == TIM2) // 60ms { } if (htim->Instance == TIM3) // 30 ms { } if (htim->Instance == TIM4) // 80ms { } if (htim->Instance == TIM5) // 100 ms { } if (htim->Instance == TIM12) // 50 ms { } /* USER CODE END Callback 1 */ } /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { // Można tu dodać kod migającej diody lub innego sygnału błędu. } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: f("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */