/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
*
© Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software component is licensed by ST under Ultimate Liberty license
* SLA0044, the "License"; You may not use this file except in compliance with
* the License. You may obtain a copy of the License at:
* www.st.com/SLA0044
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "fatfs.h"
#include "usb_device.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* Size of Reception buffer */
#define RX_BUFFER_SIZE 20
#define COUNTOF(__BUFFER__) (sizeof(__BUFFER__) / sizeof(*(__BUFFER__)))
#define test // comment to execute the HAL_UART_Receive_IT() function instead of HAL_UARTEx_ReceiveToIdle_DMA() function!
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc;
CRC_HandleTypeDef hcrc;
I2C_HandleTypeDef hi2c1;
RTC_HandleTypeDef hrtc;
SPI_HandleTypeDef hspi1;
TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim3;
TIM_HandleTypeDef htim5;
TIM_HandleTypeDef htim9;
UART_HandleTypeDef huart1;
DMA_HandleTypeDef hdma_usart1_rx;
/* USER CODE BEGIN PV */
uint8_t aintialText[] = "\r\nUSART Example\r\n";
uint8_t TxData[32] = "Data Transmitted \r\n";
uint8_t rx_buffer[32], rx_flag, rx_index, rx_data, RxData[32];
uint8_t aTextInfoStart[] = "\r\nUSART Example : Enter characters to fill reception buffers.\r\n";
uint8_t aRXBufferUser[RX_BUFFER_SIZE];
/**
* @brief Data buffers used to manage received data in interrupt routine
*/
uint8_t aRXBufferA[RX_BUFFER_SIZE];
uint8_t aRXBufferB[RX_BUFFER_SIZE];
__IO uint32_t uwNbReceivedChars;
uint8_t *pBufferReadyForUser;
uint8_t *pBufferReadyForReception;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_SPI1_Init(void);
static void MX_RTC_Init(void);
static void MX_ADC_Init(void);
static void MX_I2C1_Init(void);
static void MX_TIM3_Init(void);
static void MX_TIM5_Init(void);
static void MX_TIM9_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_TIM2_Init(void);
static void MX_CRC_Init(void);
/* USER CODE BEGIN PFP */
void PrintInfo(UART_HandleTypeDef *huart, uint8_t *String, uint16_t Size);
void StartReception(void);
void UserDataTreatment(UART_HandleTypeDef *huart, uint8_t* pData, uint16_t Size);
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_USB_DEVICE_Init();
MX_FATFS_Init();
MX_SPI1_Init();
MX_RTC_Init();
MX_ADC_Init();
MX_I2C1_Init();
MX_TIM3_Init();
MX_TIM5_Init();
MX_TIM9_Init();
MX_USART1_UART_Init();
MX_TIM2_Init();
MX_CRC_Init();
/* USER CODE BEGIN 2 */
/* Initiate Continuous reception */
#ifdef test
StartReception();
#else
HAL_UART_Receive_IT(&huart1, &rx_data, sizeof(rx_data));
#endif
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_5);
HAL_Delay(500); //250 ms delay
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_HSE
|RCC_OSCILLATORTYPE_LSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.LSEState = RCC_LSE_ON;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL6;
RCC_OscInitStruct.PLL.PLLDIV = RCC_PLL_DIV3;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_RTC;
PeriphClkInit.RTCClockSelection = RCC_RTCCLKSOURCE_LSE;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief ADC Initialization Function
* @param None
* @retval None
*/
static void MX_ADC_Init(void)
{
/* USER CODE BEGIN ADC_Init 0 */
/* USER CODE END ADC_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
ADC_InjectionConfTypeDef sConfigInjected = {0};
/* USER CODE BEGIN ADC_Init 1 */
/* USER CODE END ADC_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc.Instance = ADC1;
hadc.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
hadc.Init.Resolution = ADC_RESOLUTION_8B;
hadc.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc.Init.ScanConvMode = ADC_SCAN_ENABLE;
hadc.Init.EOCSelection = ADC_EOC_SEQ_CONV;
hadc.Init.LowPowerAutoWait = ADC_AUTOWAIT_DISABLE;
hadc.Init.LowPowerAutoPowerOff = ADC_AUTOPOWEROFF_DISABLE;
hadc.Init.ChannelsBank = ADC_CHANNELS_BANK_A;
hadc.Init.ContinuousConvMode = ENABLE;
hadc.Init.NbrOfConversion = 2;
hadc.Init.DiscontinuousConvMode = DISABLE;
hadc.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc.Init.DMAContinuousRequests = DISABLE;
if (HAL_ADC_Init(&hadc) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_1;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_24CYCLES;
if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_4;
sConfig.Rank = ADC_REGULAR_RANK_2;
if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configures for the selected ADC injected channel its corresponding rank in the sequencer and its sample time
*/
sConfigInjected.InjectedChannel = ADC_CHANNEL_1;
sConfigInjected.InjectedRank = ADC_INJECTED_RANK_1;
sConfigInjected.InjectedSamplingTime = ADC_SAMPLETIME_4CYCLES;
sConfigInjected.InjectedOffset = 0;
sConfigInjected.InjectedNbrOfConversion = 1;
sConfigInjected.ExternalTrigInjecConv = ADC_INJECTED_SOFTWARE_START;
sConfigInjected.ExternalTrigInjecConvEdge = ADC_EXTERNALTRIGINJECCONV_EDGE_NONE;
if (HAL_ADCEx_InjectedConfigChannel(&hadc, &sConfigInjected) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC_Init 2 */
/* USER CODE END ADC_Init 2 */
}
/**
* @brief CRC Initialization Function
* @param None
* @retval None
*/
static void MX_CRC_Init(void)
{
/* USER CODE BEGIN CRC_Init 0 */
/* USER CODE END CRC_Init 0 */
/* USER CODE BEGIN CRC_Init 1 */
/* USER CODE END CRC_Init 1 */
hcrc.Instance = CRC;
if (HAL_CRC_Init(&hcrc) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN CRC_Init 2 */
/* USER CODE END CRC_Init 2 */
}
/**
* @brief I2C1 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C1_Init(void)
{
/* USER CODE BEGIN I2C1_Init 0 */
/* USER CODE END I2C1_Init 0 */
/* USER CODE BEGIN I2C1_Init 1 */
/* USER CODE END I2C1_Init 1 */
hi2c1.Instance = I2C1;
hi2c1.Init.ClockSpeed = 100000;
hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C1_Init 2 */
/* USER CODE END I2C1_Init 2 */
}
/**
* @brief RTC Initialization Function
* @param None
* @retval None
*/
static void MX_RTC_Init(void)
{
/* USER CODE BEGIN RTC_Init 0 */
/* USER CODE END RTC_Init 0 */
/* USER CODE BEGIN RTC_Init 1 */
/* USER CODE END RTC_Init 1 */
/** Initialize RTC Only
*/
hrtc.Instance = RTC;
hrtc.Init.HourFormat = RTC_HOURFORMAT_24;
hrtc.Init.AsynchPrediv = 127;
hrtc.Init.SynchPrediv = 255;
hrtc.Init.OutPut = RTC_OUTPUT_DISABLE;
hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
if (HAL_RTC_Init(&hrtc) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN RTC_Init 2 */
/* USER CODE END RTC_Init 2 */
}
/**
* @brief SPI1 Initialization Function
* @param None
* @retval None
*/
static void MX_SPI1_Init(void)
{
/* USER CODE BEGIN SPI1_Init 0 */
/* USER CODE END SPI1_Init 0 */
/* USER CODE BEGIN SPI1_Init 1 */
/* USER CODE END SPI1_Init 1 */
/* SPI1 parameter configuration*/
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_2LINES;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 10;
if (HAL_SPI_Init(&hspi1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI1_Init 2 */
/* USER CODE END SPI1_Init 2 */
}
/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_IC_InitTypeDef sConfigIC = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 65535;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_IC_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
sConfigIC.ICFilter = 15;
if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
}
/**
* @brief TIM3 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM3_Init(void)
{
/* USER CODE BEGIN TIM3_Init 0 */
/* USER CODE END TIM3_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_IC_InitTypeDef sConfigIC = {0};
/* USER CODE BEGIN TIM3_Init 1 */
/* USER CODE END TIM3_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 0;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 65535;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_IC_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
sConfigIC.ICFilter = 15;
if (HAL_TIM_IC_ConfigChannel(&htim3, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM3_Init 2 */
/* USER CODE END TIM3_Init 2 */
}
/**
* @brief TIM5 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM5_Init(void)
{
/* USER CODE BEGIN TIM5_Init 0 */
/* USER CODE END TIM5_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_IC_InitTypeDef sConfigIC = {0};
/* USER CODE BEGIN TIM5_Init 1 */
/* USER CODE END TIM5_Init 1 */
htim5.Instance = TIM5;
htim5.Init.Prescaler = 0;
htim5.Init.CounterMode = TIM_COUNTERMODE_UP;
htim5.Init.Period = 4294967295;
htim5.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim5.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim5) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim5, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_IC_Init(&htim5) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim5, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
sConfigIC.ICFilter = 15;
if (HAL_TIM_IC_ConfigChannel(&htim5, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM5_Init 2 */
/* USER CODE END TIM5_Init 2 */
}
/**
* @brief TIM9 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM9_Init(void)
{
/* USER CODE BEGIN TIM9_Init 0 */
/* USER CODE END TIM9_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_IC_InitTypeDef sConfigIC = {0};
/* USER CODE BEGIN TIM9_Init 1 */
/* USER CODE END TIM9_Init 1 */
htim9.Instance = TIM9;
htim9.Init.Prescaler = 0;
htim9.Init.CounterMode = TIM_COUNTERMODE_UP;
htim9.Init.Period = 65535;
htim9.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim9.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim9) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim9, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_IC_Init(&htim9) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim9, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
sConfigIC.ICFilter = 15;
if (HAL_TIM_IC_ConfigChannel(&htim9, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM9_Init 2 */
/* USER CODE END TIM9_Init 2 */
}
/**
* @brief USART1 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_EVEN;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
HAL_UART_Transmit(&huart1,aintialText, sizeof(aintialText), 300);
//start_Tx(); //Send request frame, executed only once during initialization
/* USER CODE END USART1_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Channel5_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel5_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel5_IRQn);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_3, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_2|GPIO_PIN_5, GPIO_PIN_RESET);
/*Configure GPIO pin : PA3 */
GPIO_InitStruct.Pin = GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : PB2 PB5 */
GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_5;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : PA8 */
GPIO_InitStruct.Pin = GPIO_PIN_8;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : PB3 */
GPIO_InitStruct.Pin = GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
#ifdef test
/**
* @brief Send Txt information message on UART Tx line (to PC Com port).
* @param huart UART handle.
* @param String String to be sent to user display
* @param Size Size of string
* @retval None
*/
void PrintInfo(UART_HandleTypeDef *huart, uint8_t *String, uint16_t Size)
{
if (HAL_OK != HAL_UART_Transmit(huart, String, Size, 100))
{
Error_Handler();
}
}
/**
* @brief This function prints user info on PC com port and initiates RX transfer
* @retval None
*/
void StartReception(void)
{
/* Initializes Buffer swap mechanism (used in User callback) :
- 2 physical buffers aRXBufferA and aRXBufferB (RX_BUFFER_SIZE length)
*/
pBufferReadyForReception = aRXBufferA;
pBufferReadyForUser = aRXBufferB;
uwNbReceivedChars = 0;
/* Print user info on PC com port */
PrintInfo(&huart1, aTextInfoStart, COUNTOF(aTextInfoStart));
/* Initializes Rx sequence using Reception To Idle event API.
As DMA channel associated to UART Rx is configured as Circular,
reception is endless.
If reception has to be stopped, call to HAL_UART_AbortReceive() could be used.
Use of HAL_UARTEx_ReceiveToIdle_DMA service, will generate calls to
user defined HAL_UARTEx_RxEventCallback callback for each occurrence of
following events :
- DMA RX Half Transfer event (HT)
- DMA RX Transfer Complete event (TC)
- IDLE event on UART Rx line (indicating a pause is UART reception flow)
*/
if (HAL_OK !=HAL_UARTEx_ReceiveToIdle_DMA(&huart1, aRXBufferUser, RX_BUFFER_SIZE))
{
Error_Handler();
}
}
/**
* @brief This function handles buffer containing received data on PC com port
* @note In this example, received data are sent back on UART Tx (loopback)
* Any other processing such as copying received data in a larger buffer to make it
* available for application, could be implemented here.
* @note This routine is executed in Interrupt context.
* @param huart UART handle.
* @param pData Pointer on received data buffer to be processed
* @retval Size Nb of received characters available in buffer
*/
void UserDataTreatment(UART_HandleTypeDef *huart, uint8_t* pData, uint16_t Size)
{
/*
* This function might be called in any of the following interrupt contexts :
* - DMA TC and HT events
* - UART IDLE line event
*
* pData and Size defines the buffer where received data have been copied, in order to be processed.
* During this processing of already received data, reception is still ongoing.
*
*/
uint8_t* pBuff = pData;
uint8_t i;
/* Implementation of loopback is on purpose implemented in direct register access,
in order to be able to echo received characters as fast as they are received.
Wait for TC flag to be raised at end of transmit is then removed, only TXE is checked */
for (i = 0; i < Size; i++)
{
while (!(__HAL_UART_GET_FLAG(huart, UART_FLAG_TXE))) {}
huart->Instance->DR = *pBuff;
pBuff++;
}
}
/**
* @brief User implementation of the Reception Event Callback
* (Rx event notification called after use of advanced reception service).
* @param huart UART handle
* @param Size Number of data available in application reception buffer (indicates a position in
* reception buffer until which, data are available)
* @retval None
*/
void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef *huart, uint16_t Size)
{
static uint8_t old_pos = 0;
uint8_t *ptemp;
uint8_t i;
/* Check if number of received data in recpetion buffer has changed */
if (Size != old_pos)
{
/* Check if position of index in reception buffer has simply be increased
of if end of buffer has been reached */
if (Size > old_pos)
{
/* Current position is higher than previous one */
uwNbReceivedChars = Size - old_pos;
/* Copy received data in "User" buffer for evacuation */
for (i = 0; i < uwNbReceivedChars; i++)
{
pBufferReadyForUser[i] = aRXBufferUser[old_pos + i];
}
}
else
{
/* Current position is lower than previous one : end of buffer has been reached */
/* First copy data from current position till end of buffer */
uwNbReceivedChars = RX_BUFFER_SIZE - old_pos;
/* Copy received data in "User" buffer for evacuation */
for (i = 0; i < uwNbReceivedChars; i++)
{
pBufferReadyForUser[i] = aRXBufferUser[old_pos + i];
}
/* Check and continue with beginning of buffer */
if (Size > 0)
{
for (i = 0; i < Size; i++)
{
pBufferReadyForUser[uwNbReceivedChars + i] = aRXBufferUser[i];
}
uwNbReceivedChars += Size;
}
}
/* Process received data that has been extracted from Rx User buffer */
UserDataTreatment(huart, pBufferReadyForUser, uwNbReceivedChars);
/* Swap buffers for next bytes to be processed */
ptemp = pBufferReadyForUser;
pBufferReadyForUser = pBufferReadyForReception;
pBufferReadyForReception = ptemp;
}
/* Update old_pos as new reference of position in User Rx buffer that
indicates position to which data have been processed */
old_pos = Size;
}
#else
// The previous callback function which I used prioir to this program
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
if (huart->Instance==USART1)
{
//if the data is not being received, clear the buffer
if(rx_index ==0)
{
for (int i=0; i<20; i++)
{
rx_buffer[i]=0;
}
}
//if the character received is other than 'enter' ASCII13, save the data in buffer
if(rx_data!=13)
{
rx_buffer[rx_index++]=rx_data;
}
else
{
rx_index=0;
rx_flag=1; // turn the rx_flag 'ON'
HAL_UART_Transmit(&huart1, rx_buffer, sizeof(rx_buffer), 100); // transmit the data via UART
}
HAL_UART_Receive_IT(&huart1, &rx_data, 1); // restart the interrupt reception mode & receive only 1 char at a time!
}
}
#endif
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/