
March 2023 AN5050 Rev 8 1/79

1

AN5050
Application note

Getting started with Octo-SPI and Hexadeca-SPI Interface on
STM32 microcontrollers

Introduction

The growing demand for richer graphics, wider range of multimedia and other data-intensive
content, drives embedded designers to enable more sophisticated features in embedded
applications. These sophisticated features require higher data throughputs and extra
demands on the often limited MCU on-chip memory.

External parallel memories have been widely used so far to provide higher data throughput
and to extend the MCU on-chip memory, solving the memory size and the performance
limitation. However, this action compromises the pin count and implies a need of more
complex designs and higher cost.

To meet these requirements, STMicroelectronics offers several MCU products in the market
with the new integrated high-throughput Octo/Hexadeca-SPI interface (see the table below).

The Octo/Hexadeca-SPI interface enables the connection of the external compact-footprint
Octo-SPI/16-bit and the HyperBus™/regular protocol high-speed volatile and non-volatile
memories available today in the market. Thanks to its low-pin count, the Octo/Hexadeca-
SPI interface allows easier PCB designs and lower costs. Its high throughput allows in place
code execution (XIP) and data storage.

Thanks to the memory-mapped mode, the external memory can be accessed as if it was an
internal memory allowing the system masters (such as DMA, LTDC, DMA2D, GFXMMU,
SDMMC or GPU2D) to access autonomously even in low-power mode when the CPU is
stopped, which is ideal for mobile and wearable applications

This application note describes the OCTOSPI and HSPI peripherals in STM32 MCUs and
explains how to configure them in order to write and read external Octo-SPI/16-bit,
HyperBus™ and regular protocol memories. This document describes some typical use
cases to use the Octo/Hexadeca-SPI interface and provides some practical examples on
how to configure the OCTOSPI/HSPI peripheral depending on the targeted memory type.

Related documents

Available from STMicroelectronics web site www.st.com:

• reference manuals and datasheets for STM32 devices

• application note Quad-SPI interface on STM32 microcontrollers (AN4760)

Table 1. Applicable products

Type Series or line

Microcontrollers

STM32L4+ series, STM32L5 series, STM32U5 series

STM32H7A3/7B3, STM32H7B0 value line

STM32H723/733, STM32H725/735, STM32H730 value line

STM32H562/563/573 value line

www.st.com

http://www.st.com

Contents AN5050

2/79 AN5050 Rev 8

Contents

1 General information . 6

2 Overview of the OCTOSPI and HSPI in STM32 MCUs 7

2.1 OCTOSPI and HSPI main features . 7

2.2 OCTOSPI and HSPI in a smart architecture . 9

2.2.1 STM32L4+ series system architecture . 9

2.2.2 STM32L5 series system architecture . 11

2.2.3 STM32H7A3/7B3/7B0 system architecture . 12

2.2.4 STM32H72x/73x system architecture . 13

2.2.5 STM32U5 series system architecture . 15

2.2.6 STM32H5 system architecture . 16

3 Octo/Hexadeca-SPI interface description . 18

3.1 OCTOSPI and HSPI hardware interfaces . 18

3.1.1 OCTOSPI pins and signal interface . 18

3.1.2 HSPI pins and signal interface . 18

3.1.3 OCTOSPI delay block . 19

3.2 Two low-level protocols . 19

3.2.1 Regular-command protocol . 19

3.2.2 HyperBus protocol . 21

3.3 Three operating modes . 22

3.3.1 Indirect mode . 22

3.3.2 Automatic status-polling mode . 22

3.3.3 Memory-mapped mode . 23

4 OCTOSPI I/O manager . 24

5 OCTOSPI and HSPI configuration . 26

5.1 OCTOSPI and HSPI common configuration . 26

5.1.1 GPIOs and OCTOSPI/HSPI I/Os configuration 26

5.1.2 Interrupts and clocks configuration . 28

5.2 OCTOSPI/HSPI configuration for Regular-command protocol 30

5.3 OCTOSPI/HSPI configuration for HyperBus protocol 30

5.4 Memory configuration . 31

AN5050 Rev 8 3/79

AN5050 Contents

3

5.4.1 Memory device configuration . 31

5.4.2 HyperBus memory device configuration . 31

6 OCTOSPI application examples . 32

6.1 Implementation examples . 32

6.1.1 Using OCTOSPI in a graphical application . 32

6.1.2 Executing from external memory: extend internal memory size 33

6.2 OCTOSPI configuration with STM32CubeMX . 34

6.2.1 Hardware description . 34

6.2.2 Use case description . 36

6.2.3 OCTOSPI GPIOs and clocks configuration . 37

6.2.4 OCTOSPI configuration and parameter settings 43

6.2.5 STM32CubeMX: Project generation . 45

7 Performance and power . 73

7.1 How to get the best read performance . 73

7.2 Decreasing power consumption . 73

7.2.1 STM32 low-power modes . 74

7.2.2 Decreasing Octo-SPI and Hexadeca-SPI memory power consumption 74

8 Supported devices . 75

9 Conclusion . 75

10 Revision history . 76

List of tables AN5050

4/79 AN5050 Rev 8

List of tables

Table 1. Applicable products . 1
Table 2. OCTOSPI main features. 7
Table 3. HSPI main features. 8
Table 4. Instances on STM32U5 series devices . 15
Table 5. STM32CubeMX - Memory connection port . 37
Table 6. STM32CubeMX - Configuration of OCTOSPI signals and mode . 38
Table 7. STM32CubeMX - Configuration of OCTOSPI parameters . 43
Table 8. Document revision history . 76

AN5050 Rev 8 5/79

AN5050 List of figures

5

List of figures

Figure 1. STM32L4+ series system architecture . 11
Figure 2. STM32L5 series system architecture . 12
Figure 3. STM32H7A3/7B3/7B0 system architecture . 13
Figure 4. STM32H72x/73x system architecture. 14
Figure 5. STM32U5 system architecture . 16
Figure 6. STM32H562/563 and H573 system architecture . 17
Figure 7. OCTOSPI delay block. 19
Figure 8. Regular-command protocol: octal DTR read operation example in Macronix mode 20
Figure 9. HyperBus protocol: example of reading operation from HyperRAM. 21
Figure 10. Example of connecting an Octo-SPI flash memory and

an HyperRAM memory to an STM32 device . 24
Figure 11. OCTOSPI I/O manager Multiplexed mode . 25
Figure 12. Connecting two memories to an Octo-SPI interface. 27
Figure 13. OCTOSPI I/O manager configuration . 28
Figure 14. OCTOSPI1 and OCTOSPI2 clock scheme. 29
Figure 15. OCTOSPI graphic application use case . 33
Figure 16. Executing code from memory connected to OCTOSPI2 . 34
Figure 17. Octo-SPI flash memory and PSRAM connection on STM32L4P5G-DK. 35
Figure 18. STM32CubeMX - Octo-SPI mode window for OCTOSPI1 or OCTOSPI2 38
Figure 19. STM32CubeMX - Setting PE13 pin to OCTOSPIM_P1_IO1 AF . 39
Figure 20. STM32CubeMX - GPIOs setting window . 40
Figure 21. STM32CubeMX - Setting GPIOs to very-high speed . 40
Figure 22. STM32CubeMX - Enabling OCTOSPI global interrupt . 41
Figure 23. STM32CubeMX - System clock configuration . 42
Figure 24. STM32CubeMX - OCTOSPI1 and OCTOSPI2 clock source configuration 42
Figure 25. STM32CubeMX - OCTOSPI configuration window . 43
Figure 26. STM32CubeMX - DMA1 configuration . 67

General information AN5050

6/79 AN5050 Rev 8

1 General information

This application note provides an overview of the OCTOSPI and HSPI peripheral availability
across the STM32 MCUs listed in Table 1, Arm®(a) Cortex® core-based devices.

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

A
N

50
5

0
O

v
e

rv
ie

w
 o

f th
e O

C
T

O
S

P
I an

d
 H

S
P

I in
 S

T
M

32 M
C

U
s

A
N

50
50 R

ev 8
7

/79

2 Overview of the OCTOSPI and HSPI in STM32 MCUs

2.1 OCTOSPI and HSPI main features

The table below summarizes the OCTOSPI main features.

Table 2. OCTOSPI main features

Feature

S
T

M
32

L
4R

/S
xx

x

S
T

M
32

L
4P

5
/Q

5x
x

S
T

M
3

2L
5

 s
er

ie
s

S
T

M
3

2H
56

2/
56

3/
57

3

S
T

M
32

H
7

A
3/

7B
3

S
T

M
32

H
7

B
0

S
T

M
32

H
72

x/
3x

(1
)

STM32U5 series

S
T

M
3

2U
53

5/
54

5

S
T

M
3

2U
57

5/
58

5

S
T

M
3

2U
59

x/
5A

x

S
T

M
32

U
5F

x/
5G

x

Number of instances 2 1 1 2 1 2 2 2

Max
OCTOSPI
speed
(MHz)(2)

Regular-command SDR mode 86 92 90 150 140

N/A

100

N/A

Regular-command DTR mode with
DQS HyperBus protocol with
single-ended clock (3.3 V)

64(3) 90 76 125 110(4) 100

HyperBus protocol with differential
clock (1.8 V)

N/A 66 58 125 110(4) 100 93

OCTOSPI I/O manager arbiter Available N/A N/A
Available

N/A
Available

Multiplexed mode N/A Available N/A N/A N/A

Dedicated OTFDEC support (one-the-fly
decryption engine)

N/A Available(5)

Memory-
mapped
mode

Max bus frequency access (MHz)
120

(32-bit AHB bus)

110
(32-bit

AHB bus)

250

(32-bit
AHB bus)

280
(64-bit

AXI
bus)

275
(64-bit

AXI
bus)

160
(32-bit

AHB bus)

Max addressable space (Mbytes) 256

O
ve

rv
iew

 o
f th

e
 O

C
T

O
S

P
I a

n
d

 H
S

P
I in

 S
T

M
32

 M
C

U
s

A
N

5
05

0

8
/79

A
N

50
50 R

ev 8

Indirect
mode

Max bus frequency access (MHz)
120 (32-bit AHB

bus)

110
(32-bit

AHB bus)

250

(32-bit
AHB bus)

280
(32-bit
AHB
bus)

275
(32-bit
AHB
bus)

160
(32-bit

AHB bus)

Max addressable space (Gbytes) 4

1. Devices belonging to STM32H723/733, STM32H725/735 and STM32H730 Value line.

2. For the maximum frequency reached, refer to each product datasheet.

3. PSRAM memories are not supported.

4. Using PC2, PI11, PF0 or PF1 I/O in the data bus adds 3.5 ns to this timing value. For more details, refer to the specific product datasheet.

5. OTFDEC not supported on STM32H7A3, STM32H72x, and STM32U575 devices.

Table 2. OCTOSPI main features (continued)

Feature

S
T

M
3

2L
4

R
/S

x
xx

S
T

M
3

2L
4P

5/
Q

5
xx

S
T

M
32

L
5

se
ri

e
s

S
T

M
32

H
5

62
/

56
3/

57
3

S
T

M
32

H
7A

3/
7B

3
S

T
M

32
H

7B
0

S
T

M
3

2H
72

x/
3

x(1
)

STM32U5 series

S
T

M
32

U
5

35
/5

4
5

S
T

M
32

U
5

75
/5

8
5

S
T

M
32

U
5

9x
/

5
A

x

S
T

M
32

U
5

F
x/

5G
x

Table 3. HSPI main features

Feature
STM32U59x/5Ax

STM32U5Fx/5Gx

Number of instances 1

OCTOSPI I/O manager arbiter N/A

Multiplexed mode N/A

Dedicated OTFDEC support (one-the-fly decryption engine) N/A

Memory-mapped mode
Max bus frequency access (MHz) 160 (32-bit AHB bus)

Indirect mode

AN5050 Rev 8 9/79

AN5050 Overview of the OCTOSPI and HSPI in STM32 MCUs

78

2.2 OCTOSPI and HSPI in a smart architecture

The OCTOSPI is an AHB/AXI slave mapped on a dedicated AHB/AXI layer. The HSPI is an
AHB slave mapped on a dedicated AHB layer. This type of mapping allows the OCTOSPI
and HSPI to be accessible as if it was an internal memory thanks to Memory-mapped mode.

In addition, the OCTOSPI and HSPI peripherals are integrated in a smart architecture that
enables the following:

• All masters can access autonomously to the external memory in Memory-mapped
mode, without any CPU intervention.

• Masters can read/write data from/to memory in Sleep mode when the CPU is stopped.

• The CPU, as a master, can access the OCTOSPI and HSPI and then execute code
from the memory, with support of wrap operation, to enable "critical word first" access
and hence improve performance in case of cache line refill.

• The DMA can do transfers to/from the OCTOSPI and HSPI to/from other internal or
external memories.

• The graphical DMA2D can directly build framebuffer using graphic primitives from the
connected Octo-SPI/16-bit flash or HyperFlash™ memory.

• The DMA2D can directly build framebuffer in Octo-SPI/16-bit SRAM or HyperRAM™.

• The GFXMMU as a master can autonomously access the OCTOSPI/HSPI.

• The LTDC can fetch framebuffer directly from the memory that is connected to the
OCTOSPI/HSPI.

• The SDMMC master interface can transfer data between the OCTOSPI/HSPI and
SD/MMC/SDIO cards without any CPU intervention.

• The GPU2D master interface can load/store data from/to the HSPI memory.

2.2.1 STM32L4+ series system architecture

The STM32L4+series system architecture consists mainly of a 32-bit multilayer AHB bus
matrix that interconnects multiple masters and multiple slaves.

Overview of the OCTOSPI and HSPI in STM32 MCUs AN5050

10/79 AN5050 Rev 8

These devices integrate the OCTOSPI peripherals as described below:

• two OCTOSPI slaves (OCTOSPI1 and OCTOSPI2): each of them is mapped on a
dedicated AHB layer.

• OCTOSPI slaves are completely independent from each other. Each OCTOSPI slave
can be configured independently.

• Each OCTOSPI slave is independently accessible by all the masters on the AHB bus
matrix.

• When the MCU is in Sleep or Low-power sleep mode, the connected memories are still
accessible by the masters.

• In Memory-mapped mode:

– OCTOSPI1 addressable space is from 0x9000 0000 to 0x9FFF FFFF.

– OCTOSPI2 addressable space is from 0x7000 0000 to 0x7FFF FFFF.

• In a graphical application, the LTDC can autonomously fetch pixels data from the
connected memory.

• The external memory connected to OCTOSPI1 or OCTOSPI2 can be accessed (for
code execution or data) by the Cortex-M4 either through S-Bus, or through I-bus and
D-bus when physical remap is enabled.

For main feature differences between OCTOSPIs in STM32L4+ series devices,
refer to Table 2.

AN5050 Rev 8 11/79

AN5050 Overview of the OCTOSPI and HSPI in STM32 MCUs

78

The figure below shows the OCTOSPI1 and OCTOSPI2 slaves interconnection in the
STM32L4+ series system architecture.

Figure 1. STM32L4+ series system architecture

2.2.2 STM32L5 series system architecture

The STM32L5 series system architecture consists mainly of a 32-bit multilayer AHB bus
matrix that interconnects six masters and seven slaves.

The system of these devices integrates the OCTOSPI peripheral as described below:

• one OCTOSPI slave (OCTOSPI1) mapped on a dedicated AHB layer and accessible
independently by all the masters connected to the AHB bus matrix

• When the MCU is in Sleep or Low-power sleep mode, the connected memories are still
accessible by the masters.

• In Memory-mapped mode, the OCTOSPI1 addressable space is from
0x9000 0000 to 0x9FFF FFFF.

• The external memory connected to the OCTOSPI1 can be accessed (for code
execution or data) by the Cortex-M33 either through S-Bus or through C-bus when
physical remap is enabled.

MSv64005V3
BusMatrix-S

A
C

C
E

L

ICode

DCode

Bus mutliplexer

32-bit AHB bus

DMA2D

Flash

memory

SRAM3

GFXMMU
(3)

AHB1 peripheral

AHB2 peripheral

FMC

I-
B

us

D
-B

us

S
-B

us

OCTOSPI access

Cortex-M4

with FPU
DMA1 DMA2 LCD-TFT SDMMC1

GFXMMU
(3)

SDMMC2
(4)

SRAM2

SRAM1

OCTOSPI2

OCTOSPI1

Octo-SPI or

HyperBus

memories
(2)

Masters having access to OCTOSPI

1 1

1 1

1 1
O

C
T

O
S

P
I

I/
O

 m
a
n

a
g

e
r

(2) PSRAMs are not supported in STM32L4R/Sxxx
products

(1) When remapped

(3) Available in STM32L4R/Sxxx products

(4) Available in STM32L4P5xx/Q5xx products

Overview of the OCTOSPI and HSPI in STM32 MCUs AN5050

12/79 AN5050 Rev 8

• The CPU can benefit from the 8-Kbyte ICACHE for code execution when accessing the
OCTOSPI by remap. Thanks to the 8-Kbyte ICACHE, the CoreMark® execution from
the external memory can reach a highly close score to the internal flash memory.

The figure below shows the OCTOSPI1 in the STM32L5 series system architecture.

Figure 2. STM32L5 series system architecture

2.2.3 STM32H7A3/7B3/7B0 system architecture

The system architecture of STM32H7A3/7B3/7B0 devices consists mainly of two domains:

• CD domain (CPU power and clock domain): contains a 64-bit AXI bus matrix and
a 32-bit AHB bus matrix allowing multiple masters to be connected to multiple slaves.

• SRD domain (SmartRun power and clock domain): contains a 32-bit AHB bus matrix
allowing multiple masters to be connected to multiple slaves.

Some masters are able to access slaves in other bus matrices through the domain and
inter-domain buses.

These devices integrate two OCTOSPI slaves (OCTOSPI1 and OCTOSPI2), with the
following characteristics:

• Each of them is accessible independently in Memory mapped mode through a 64-bit
AXI bus.

• Each of them is completely independent from the other, and can be configured or
accessed in Indirect mode independently through AHB3.

• Each of them is independently accessible by all the masters on the AXI bus matrix.

• When the MCU is in Sleep or LPSleep mode, the connected memories are still
accessible by the masters.

MSv64006V4

Bus mutliplexer

32-bit AHB bus

SDMMC1

When remapped by ICACHE1

S
lo

w
-b

us
C

-b
us

S
-B

us

OCTOSPI access

DMA1 DMA2

OCTOSPI1

Octo-SPI or

HyperBus

memories

Masters having access to OCTOSPI

OTFDEC

F
as

t-
bu

s

8-Kbyte

ICACHE

Cortex-M33

with TrustZone

mainline and FPU

1

1

BusMatrix-S

AHB1 peripherals

AHB2 peripherals

Flash memory

SRAM1

SRAM2

FSMC

AN5050 Rev 8 13/79

AN5050 Overview of the OCTOSPI and HSPI in STM32 MCUs

78

• In Memory-mapped mode:

– OCTOSPI1 addressable space is from 0x9000 0000 to 0x9FFF FFFF.

– OCTOSPI2 addressable space is from 0x7000 0000 to 0x7FFF FFFF.

• In a graphical application, the LTDC can autonomously fetch pixels data from the
connected memory.

Figure 3. STM32H7A3/7B3/7B0 system architecture

2.2.4 STM32H72x/73x system architecture

The system architecture of STM32H72x/73x devices consists mainly of three domains:

• D1 domain (CPU and main memories): contains a 64-bit AXI bus matrix allowing
multiple masters to be connected to multiple slaves.

• D2 domain (most peripherals): contains a 32-bit AHB bus matrix allowing multiple
masters to be connected to multiple slaves.

• D3 domain (SmartRun power and clock domain): contains a 32-bit AHB bus matrix
allowing multiple masters to be connected to multiple slaves.

Some masters are able to access slaves in other bus matrices through the domain and
inter-domain buses.

These devices integrate two OCTOSPI slaves (OCTOSPI1 and OCTOSPI2), with the
following characteristics:

• Each of them is accessible independently in Memory mapped mode through a 64-bit
AXI bus.

• Each of them is completely independent from the other, and can be configured or
accessed in Indirect mode independently through AHB3.

MSv64342V2

AHB SRAM1

AHB1

APB2

USBHS1SDMMC2 BDMA1DMA2DMA1

Flash Bank 1
Flash Bank 2

APB3

FMC

DMA2DSDMMC1

AXI to AHB

MDMA

Cortex-M7

I$ D$

ITCM

AX
IM

AHBP

BDMA2

SRD SRAM
AHB4 APB4

AHBS

32-bit AHB bus matrix
CD domain

Bus multiplexer

AXI
APB

AHBTCM

64-bit bus width
32-bit bus width

DTCM

AHB SRAM2

DM
A1

_M
EM

DM
A1

_P
ER

IP
H

DM
A2

_M
EM

DM
A2

_P
ER

IP
H

D

AHB2

APB1AHB3

Masters having access to OCTOSPI

AXI SRAM1

GFX_MMU

FLIFT

OCTOSPI1

AXI SRAM2

AXI SRAM3

64-bit AXI bus matrix
CD domain

CD-to-SRD AHB

32-bit AHB bus matrix
SRD domain

LTDC

OTFDEC1

OTFDEC2 OCTOSPI2

O
C

TO
S

P
I I

/O
 m

an
ag

er

Octo-SPI
or

HyperBus
memories

Backup SRAM

Notes: - OTFDEC1 and OTFDEC2 are available only on STM32H7B0 and STM32H7B3 devices.
 - Bank 1 is limited to 128 Kbytes on STM32H7B0.
 STM32H7A3xG/7A3xI/7B3 feature two banks of respectively 512 Kbytes and 1 Mbyte.

Overview of the OCTOSPI and HSPI in STM32 MCUs AN5050

14/79 AN5050 Rev 8

• Each of them is independently accessible by all the masters on the AXI bus matrix.

• When the MCU is in Sleep or LPSleep mode, the connected memories are still
accessible by the masters.

• In Memory-mapped mode:

– OCTOSPI1 addressable space is from 0x9000 0000 to 0x9FFF FFFF

– OCTOSPI2 addressable space is from 0x7000 0000 to 0x7FFF FFFF

• In a graphical application, the LTDC can autonomously fetch pixels data from the
connected memory.

The figure below shows the OCTOSPI1 and OCTOSPI2 in the STM32H72x/73x system
architecture.

Figure 4. STM32H72x/73x system architecture

MSv66924V1

A
X

IM

DMA
2

Ethernet
MAC

SDMMC
2

DMA
1 USBHS1

APB1

SDMMC1 MDMA DMA2D LTDC

BDMA

APB4

Cortex-M7

I$ D$

A
H

B
P

D
M

A
1_

M
E

M
D

M
A

1_
P

E
R

IP
H

D
M

A
2_

M
E

M
D

M
A

2_
P

E
R

IP
H

APB3

32-bit AHB bus matrix
D2 domain

64-bit AXI bus matrix
D1 domain

32-bit AHB bus matrix
D3 domain

DTCM

ITCM

Flash A

AXI SRAM

AXI SRAM

OTFDEC2

FMC

SRAM1

SRAM2

AHB1

AHB2

AHB4

SRAM4

Backup
SRAM

AHBS

CPU

D2-to-D1 AHB
D2-to-D3 AHB

D1-to-D2 AHB

D1-to-D3
AHB

AHB3

APB2

ITCM OR

OCTOSPI2

OTFDEC1 OCTOSPI1

O
C

TO
S

P
I /

IO
 m

an
ag

er

Bus multiplexer

AXI
APB

AHBTCM

64-bit bus width
32-bit bus width

Masters having access to OCTOSPI

O
ct

o-
S

P
I o

r H
yp

er
B

us
 m

em
or

ie
s

AN5050 Rev 8 15/79

AN5050 Overview of the OCTOSPI and HSPI in STM32 MCUs

78

2.2.5 STM32U5 series system architecture

The STM32U5 series system architecture consists mainly of a 32-bit multilayer AHB bus
matrix that interconnects multiple masters and multiple slaves.

These devices integrate the OCTOSPI/HSPI peripherals as described below:

• The two OCTOSPI slave (OCTOSPI1/2) and HSPI slave are mapped on a dedicated
AHB layer and accessible independently by all the masters connected to the AHB bus
matrix.(a)

• When the MCU is in Sleep or Low-power sleep mode, the connected memories are still
accessible by the masters.

• In Memory-mapped mode:

– OCTOSPI1 addressable space is from 0x9000 0000 to 0x9FFF FFFF.

– OCTOSPI2 addressable space is from 0x7000 0000 to 0x7FFF FFFF.(b)

– HSPI addressable space is from 0xA000 0000 to 0xAFFF FFFF.

• The CPU can benefit from the ICACHE for code execution when accessing the
OCTOSPI1/2 or HSPI by remap. Thanks to the ICACHE, the CoreMark® execution
from the external memory can reach a highly close score to the internal flash memory.

• The CPU can also benefit from the DCACHE1 and the GPU from DCACHE2 for data
transactions when accessing the OCTOSPI1/2 or HSPI.

• The CPU can profit as well from the GPU2D master interface for data load through the
OCTOSPI1/2 or HSPI.

For main feature differences between OCTOSPIs in STM32U5 series devices, refer to
Table 4.

The figure below shows the OCTOSPI and HSPI slaves interconnection in the STM32U5
series system architecture.

a. Only one OCTOSPI instance for STM32U535/545

b. For STM32U575/585, STM32U59x/5Ax, STM32U5Fx/5Gx

Table 4. Instances on STM32U5 series devices

Devices OCTOSPI1 OCTOSPI2 OCTOSPIM HSPI1

STM32U535/545 X - - -

STM32U575/585 X X X -

STM32U59x/5Ax X X X X

STM32U5Fx/5Gx X X X X

Overview of the OCTOSPI and HSPI in STM32 MCUs AN5050

16/79 AN5050 Rev 8

Figure 5. STM32U5 system architecture

2.2.6 STM32H5 system architecture

The STM32H5 series system architecture consists mainly of a 32-bit multilayer AHB bus
matrix that interconnects multiple masters and multiple slaves.

MSv69789V2

S
-b

us

F
as

t-
bu

s

S
lo

w
-b

us

32-bit bus matrix

C
-b

us

MPCBB1

MPCBB2

MPCWM1 OCTOSPI1

AHB2
peripherals

AHB1
peripherals

SRAM2

SRAM1

FLASH
(512-Kbyte/
2/4-Mbyte)

MPCBBx: Block-based memory protection controller

Bus multiplexer
Legend

Master Interface

Slave Interface

MPCWMx: Watermark-based memory protection controller

DCACHE1
(4/16-Kbyte)

128-bit cache refill

MPCBB3 SRAM3

MPCWM5 OCTOSPI2

Fast bus multiplexer

SRD

OTFDEC1

OTFDEC2

MPCWM4 BKPSRAM

MPCBB4 SRAM4

MPCBB5 SRAM5

HSPI1MPCWM6

DCACHE2
(16-Kbyte)

GPDMA1 DMA2D SD
MMC1

SD
MMC2

P
or

t 1

P
or

t 0

LTDC GPU2D GFXMMU
USB
OTG
HS

Cortex-M33
with TrustZone mainline and FPU

ICACHE (8/32-
Kbyte)

MPCBB6 SRAM6

M
0

po
rt

M
1

po
rt

APB1 peripherals

APB2 peripherals

32-Kbyte

16-Kbyte

AHB3
peripherals

Fast bus multiplexer on STM32U59x/5Ax/5Fx/5Gx
Fast bus multiplexer on STM32U575/585

Peripheral not present in STM32U535/545

Peripheral not present in STM32U535/545/575/585

Peripheral present only in STM32U5Fx/5Gx

Masters having access to OCTOSPI and HSPI

FSMCMPCWM2
MPCWM3

AN5050 Rev 8 17/79

AN5050 Overview of the OCTOSPI and HSPI in STM32 MCUs

78

The system architecture of these devices integrates the OCTOSPI peripheral as described
below:

• One OCTOSPI slave (OCTOSPI1) mapped on a dedicated AHB layer and accessible
independently by all the masters connected to the AHB bus matrix.

• When the MCU is in Sleep or Low-power sleep mode, the connected memories are still
accessible by the masters.

• In Memory-mapped mode, the OCTOSPI1 addressable space is from 0x9000 0000 to
0x9FFF FFFF.

• The external memory connected to the OCTOSPI1 can be accessed for code
execution or data fetching by the Cortex-M33 either through C-bus via the instruction
cache ICACHE or through S-bus via the data cache DCache .

The figure below shows the OCTOSPI slaves interconnection in the STM32H5 series
system architecture.

Figure 6. STM32H562/563 and H573 system architecture

MSv72428V1

DCACHE
(4-Kbyte)

OTFDEC

Flash (2
Mbytes)

SRAM1

SRAM2

SRAM3

BKPSRAM

OCTOSPI

FMC

MPCWM4

MPCBB3

MPCBB2

MPCBB1

AHB1
peripherals

MPCWM1

MPCWM2

AHB4
peripherals

AHB3
peripherals

AHB2
peripherals

32-bit Bus Matrix

S
lo

w
-b

us

Fa
st

-
bu

s

C
-b

us

S
-b

us

P
or

t 1

P
or

t 0

P
or

t 1

P
or

t 0

GPDMA1 GPDMA2 SDMMC1 SDMMC2
ETHERNET

MAC
Cortex-M33

with TrustZone mainline and FPU

ICACHE
(8-Kbyte)

MPCBBx: Block-based memory protection controller

Bus multiplexer

Legend

Master Interface

Slave Interface

MPCWMx: Watermark-based memory protection controller

Fast bus multiplexer

Masters having access to OCTOSPI

Octo/Hexadeca-SPI interface description AN5050

18/79 AN5050 Rev 8

3 Octo/Hexadeca-SPI interface description

The Octo-SPI is a serial interface that allows communication on eight data lines between a
host (STM32) and an external slave device (memory). The Hexadeca-SPI is a serial
interface that allows communication on 16 data lines between a host (STM32) and an
external slave device (memory).

This interface is integrated on the STM32 MCU to fit memory-hungry applications without
compromising performances, to simplify PCB (printed circuit board) designs and to reduce
costs.

3.1 OCTOSPI and HSPI hardware interfaces

The OCTOSPI provides a flexible hardware interface, that enables the support of multiple
hardware configurations: Single-SPI (legacy SPI), Dual-SPI, Quad-SPI, Dual-quad-SPI and
Octo-SPI. The HSPI integrates all protocols supported by the OCTOSPI and it provides new
ones: the Dual-octal and the 16-bit modes.

They also support the HyperBus protocol with single-ended clock (3.3 V signals) or
differential clock (1.8 V signals). The flexibility of the Octo/Hexadeca-SPI hardware interface
permits the connection of most serial memories available in the market.

3.1.1 OCTOSPI pins and signal interface

The Octo-SPI interface uses the following lines:

• OCTOSPI_NCS line for chip select

• OCTOSPI_CLK line for clock

• OCTOSPI_NCLK to support 1.8 V HyperBus protocol

• OCTOSPI_DQS line for data strobe/write mask signals to/from the memory

• OCTOSPI_IO[0...7] lines for data

Note: The HyperBus differential clock (1.8 V) is not supported with the STM32L4Rxxx and
STM32L4Sxxx products.

Figure 10 shows Octo-SPI interface signals.

3.1.2 HSPI pins and signal interface

The HSPI interface uses the following lines:

• HSPI_NCS line for chip select

• HSPI_CLK line for clock

• HSPI_NCLK to support 1.8 V HyperBus protocol

• HSPI_DQS0/1 line for data strobe/write mask signals to/from the memory

• HSPI_IO[0...15] lines for data

AN5050 Rev 8 19/79

AN5050 Octo/Hexadeca-SPI interface description

78

3.1.3 OCTOSPI delay block

The delay block (DLYB) can be used to insert delays between data and DQS or CLK, during
data read operations to compensate for data propagation delays.

The following figure shows the DLYB and OCTOSPI interconnection.

Figure 7. OCTOSPI delay block

From the OCTOSPI registers, the user can chose:

• to select the delay block output clock as sampling clock or not, by enabling/disabling
the DLYBYP bit in the OCTOSPI_DCR1 register.

• to select the delay block delayed signal (clock or DQS) by enabling/disabling the DQSE
bit.

To operate properly and deliver a precise delay, the delay block must be calibrated before
use:

• In the STM32L4+ and STM32L5 series, the delay block is a feature provided to the
OCTOSPI interface, for which unitary delays can be configured from OCTOSPIx_DLY
in the RCC_DLYCFGR register.

• In the STM32H7A3/7B3/7B0, STM32H72x/73x, and STM32U5 devices, the delay block
is an independent peripheral that can be configured for the Octo-SPI interface.

For more informations about delay block configuration, refer to the delay block section in the
product reference manual. For more information about delay block and unitary delays
characteristics, refer to the specific product datasheet.

3.2 Two low-level protocols

The Octo/Hexadeca-SPI interface can operate in two different low-level protocols:
Regular-command and HyperBus. Each protocol supports two operating modes:

• Indirect mode

• Memory-mapped mode

The Regular-command supports the Automatic status-polling operating mode.

3.2.1 Regular-command protocol

The Regular-command protocol is the classical frame format where the OCTOSPI and HSPI
communicate with the external memory device by using commands where each command

MSv65661V1

OCTOSPI

Delay block

OCTOSPI_CLK

OCTOSPI_DQS

0

1

DQSE

1

0

DLYBYP

Sampling
clock

Octo/Hexadeca-SPI interface description AN5050

20/79 AN5050 Rev 8

can include up to five phases. The external memory device can be a Single-SPI, Dual-SPI,
Quad-SPI, Dual-quad-SPI, Octo-SPI, dual-octal or 16-bit memory.

Flexible-frame format and hardware interface

The Octo/Hexadeca-SPI interface provides a fully programmable frame composed of five
phases. Each phase is fully configurable, allowing the phase to be configured separately in
terms of length and number of lines.

The five phases are the following:

• Instruction phase: can be set to send a 1-, 2-, 3- or 4-byte instruction (SDR or DTR).
This phase can send instructions using the Single-SPI, Dual-SPI, Quad-SPI or
Octo-SPI mode.

• Address phase: can be set to send a 1-, 2-, 3- or 4-byte address. This phase can send
addresses using the Single-SPI, Dual-SPI, Quad-SPI or Octo-SPI mode.

• Alternate-bytes phase: can be set to send a 1-, 2-, 3- or 4-alternate bytes. This phase
can send alternate bytes using the Single-SPI, Dual-SPI, Quad-SPI or Octo-SPI mode.

• Dummy-cycles phase: can be set to 0 to up to 31 cycles.

• Data phase: for Indirect or Automatic status-polling mode, the number of bytes to be
sent/received is specified in the OCTOSPI_DLR / HSPI_DLR register. For Memory-
mapped mode the bytes are sent/received following any AHB/AXI data interface. This
phase can send/receive data using the Single-SPI, Dual-SPI, Quad-SPI, Octo-SPI or
16-bit mode(a).

Any of these phases can be configured to be skipped.

The figure below illustrates an example of an octal DTR read operation, showing instruction,
address, dummy and data phases.

Data strobe (DQS) usage

The DQS signal can be used for data strobing during the read transactions when the device
is toggling the DQS aligned with the data.

Figure 8. Regular-command protocol: octal DTR read operation example in Macronix
mode

a. Only the HSPI supports the 16-bit mode.

MSv43489V1

NCS

Dummy

IO[7:0]

Address

CLK

DQS

A[31:24]EEh 11h D1 D0 D3 D2A[23:16] A[15:8] A[7:0]

Word
unit

Word
unit

AN5050 Rev 8 21/79

AN5050 Octo/Hexadeca-SPI interface description

78

3.2.2 HyperBus protocol

The OCTOSPI/HSPI support the HyperBus protocol that enables the communication with
HyperRAM and HyperFlash memories.

The HyperBus has a double-data rate (DTR) interface where two data-bytes per clock cycle
are transferred over the DQ input/output (I/O) signals, leading to high read and write
throughputs.

Note: For additional information on HyperBus interface operation, refer to the HyperBus
specification protocol.

The HyperBus frame is composed of two phases:

• Command/address phase: the OCTOSPI/HSPI sends 48 bits (CA[47:0]) over IO[7:0] to
specify the operations to be performed with the external device.

• Data phase: the OCTOSPI performs data transactions from/to the memory in Octal-SPI
mode. The HSPI can transfer data in Octal-SPI or 16-bit mode.

During the command/address (CA) phase, the read-write data strobe (RWDS) is used by
the HyperRAM memory to indicate if an additional initial access latency has to be inserted or
not. If RWDS was low during the CA period, only one latency count is inserted (tACC initial
access). If RWDS was high during the CA period, an additional latency count is inserted
(2*tACC).

The initial latency count (tACC) represents the number of clock cycles without data transfer
used to satisfy any initial latency requirements before data is transferred. The initial latency
count required for a particular clock frequency is device dependent, it is defined in the
memory device configuration register.

Note: For HyperFlash memories, the RWDS is only used as a read data strobe.

The figure below illustrates an example of an HyperBus read operation.

Figure 9. HyperBus protocol: example of reading operation from HyperRAM

MSv43492V1

NCS

t RWR =Read write recovery t ACC = Initial access

Latency count

Command-Address

47:40 39:32 31:24 23:16 15:8 7:0

High = 2x Latency count
Low = 1x Latency count

Dn
A

Dn
B

Dn+1
A

Dn+1
B

Host drives DQ[7:0] and memory drives RWDS.
and RWDS.

RWDS and data
are edge aligned.

CK

RWDS

DQ[7:0]

Memory drives DQ[7:0]

Octo/Hexadeca-SPI interface description AN5050

22/79 AN5050 Rev 8

Depending on the application needs, the OCTOSPI/HSPI peripheral can be configured to
operate in the following HyperBus modes:

• HyperBus memory mode: the protocol follows the HyperBus specification, allowing
read/write access from/to the HyperBus memory.

• HyperBus register mode: must be used to access to the memory register space, that is
useful for memory configuration.

3.3 Three operating modes

Whatever the used low-level protocol, the OCTOSPI/HSPI can operate in the indirect mode
and in the memory-mapped mode. When using the Regular-command protocol, the
OCTOSPI/HSPI can operate in the Automatic status-polling mode. The three operating
modes detailed below.

3.3.1 Indirect mode

The Indirect mode is used in the following cases (whatever the HyperBus or
Regular-command protocol):

• read/write/erase operations

• if there is no need for AHB masters to access autonomously the OCTOSPI/HSPI
peripheral (available in Memory-mapped mode)

• for all the operations to be performed through the OCTOSPI/HSPI data register, using
CPU or DMA

• to configure the external memory device

3.3.2 Automatic status-polling mode

The Automatic status-polling mode allows an automatic polling fully managed by hardware
on the memory status register. This feature avoids the software overhead and the need to
perform software polling. An interrupt can be generated in case of match.

The Automatic status-polling mode is mainly used in the below cases:

• to check if the application has successfully configured the memory: after a write
register operation, the OCTOSPI/HSPI periodically reads the memory register and
checks if bits are properly set. An interrupt can be generated when the check is ok.

– Example: this mode is commonly used to check if the write enable latch bit (WEL)
is set. Once the WEL bit is set, the status match flag is set and an interrupt can be
generated (if the status-match interrupt-enable bit (SMIE) is set)

• to autonomously poll for the end of an ongoing memory operation: the OCTOSPI/HSPI
polls the status register inside the memory while the CPU continues the execution. An
interrupt can be generated when the memory operation is finished.

– Example: this mode is commonly used to wait for an ongoing memory operation
(programming/erasing). The OCTOSPI/HSPI in Automatic status-polling mode
reads continuously the memory status register and checks the write-in progress bit
(WIP). As soon as the operation ends, the status-match flag is set and an interrupt
can be generated (if SMIE is set).

AN5050 Rev 8 23/79

AN5050 Octo/Hexadeca-SPI interface description

78

3.3.3 Memory-mapped mode

The Memory-mapped mode is used in the cases below:

• read and write operations

• to use the external memory device exactly like an internal memory
(so that any AHB/AXI master can access it autonomously)

• for code execution from an external memory device

In Memory-mapped mode, the external memory is seen by the system as if it was an
internal memory. This mode allows all AHB/AXI masters to access an external memory
device as if it was an internal memory. The CPU can execute code from the external
memory as well.

When the Memory-mapped mode is used for reading, a prefetching mechanism, fully
managed by the hardware, enables the optimization of the read and the execution
performances from the external memory.

Each OCTOSPI/ HSPI peripheral is able to manage up to 256 Mbytes of memory space:

• OCTOSPI1 addressable space: from 0x9000 0000 to 0x9FFF FFFF (256 Mbytes)

• OCTOSPI2 addressable space: from 0x7000 0000 to 0x7FFF FFFF (256 Mbytes)

• HSPI addressable space: from 0xA000 0000 to 0xAFFF FFFF (256 Mbytes)

Note: For the HSPI memory-mapped region, it is required to configure the MPU in order to support
the XIP.

Starting memory-mapped read or write operation

A memory-mapped operation is started as soon as there is an AHB master read or write
request to an address in the range defined by DEVSIZE.

If there is an on-going memory-mapped read (respectively write) operation, the application
can start a write operation as soon as the on-going read (respectively write) operation is
terminated.

Note: Reading the OCTOSPI_DR data register in Memory-mapped mode has no meaning and
returns 0.

The data length register OCTOSPI_DLR has no meaning in Memory-mapped mode.

Execute in place (XIP)

The OCTOSPI supports the execution in place (XIP) thanks to its integrated prefetch buffer.
The XIP is used to execute the code directly from the external memory device. The
OCTOSPI loads data from the next address in advance. If the subsequent access is indeed
made at a next address, the access is completed faster since the value is already
prefetched.

Send instruction only once (SIOO)

The SIOO feature is used to reduce the command overhead and boost non-sequential
reading performances (like execution). When SIOO is enabled, the command is sent only
once, when starting the reading operation. For the next accesses, only the address is sent.

Note: Refer to the reference manual to confirm the availability of this feature for the selected
product.

OCTOSPI I/O manager AN5050

24/79 AN5050 Rev 8

4 OCTOSPI I/O manager

The OCTOSPI I/O manager allows the user to set a fully programmable pre-mapping of the
OCTOSPI1 and OCTOSPI2 signals. Any OCTOSPIM_Pn_x port signal can be mapped
independently to the OCTOSPI1 or OCTOSPI2.

By default, after reset, all the signals of the OCTOSPI1 and OCTOSPI2 are mapped
respectively on Port1 and Port2.

For instance when two external memories are used, an HyperRAM can be connected to
Port1 and an Octo-SPI flash memory can be connected to Port2 as shown in the figure
below. In that case, the user has two possibilities:

• HyperRAM memory linked to OCTOSPI1 and flash memory linked to OCTOSPI2

• HyperRAM memory linked to OCTOSPI2 and flash memory linked to OCTOSPI1

The figure below shows an Octo-SPI flash and an HyperRAM memories connected to the
STM32 MCU using the Octo-SPI interface. Thanks to the OCTOSPI I/O manager, the
HyperRAM memory can be linked to the OCTOSPI1 and the flash memory can be linked to
the OCTOSPI2, and vice versa.

Figure 10. Example of connecting an Octo-SPI flash memory and
an HyperRAM memory to an STM32 device

OCTOSPI I/O manager Multiplexed mode

The OCTOSPI I/O manager implements a Multiplexed mode feature.When enabled, both
OCTOSPI1/2 signals are muxed over one OCTOSPI I/O port except the OCTOSPI1/2_NCS
pins. A configurable arbitration system manages the transactions to the two external
memories.

This feature allows two external memories to be exploited using few pins (up to 13 pins in
case of HyperBus differential clock) on small packages, in order to reduce the number of
pins, PCB design cost and time.

The Multiplexed mode is enabled after setting MUXEN bit in OCTOSPIM_CR.

MSv47762V2

OctoS

PI2

NCS
CK
NCK

DQ[7:0]

RWDS

NCS
SCLK

SIO[0:7]

DQS

OCTOSPI1 slave OCTOSPI2 slave

O
C

T
O

S
P

I1

P
o

rt
 1

P
o

rt
 2

HyperRAM
memory

Flash
memory

O
C

T
O

S
P

I2

OCTOSPIM_P1_CLK
OCTOSPIM_P1_NCS

OCTOSPIM_P1_IO[7:0]

OCTOSPIM_P2_IO[7:0]

OCTOSPIM_P1_DQS

OCTOSPIM_P2_DQS

OCTOSPIM_P2_NCS
OCTOSPIM_P2_CLK

Port 2 signalsPort 1 signals

OCTOSPI

I/O manager

AN5050 Rev 8 25/79

AN5050 OCTOSPI I/O manager

78

The arbitration system can be configured with MAXTRAN[7:0] field in OCTOSPI_DCR3
register. This field manages the max duration in which the OCTOSPIx takes control of the
bus. If MAXTRAN + 1 OCTOSPI bus clock cycles is reached and the second OCTOSPI is
not requesting an access, the transaction is not stopped and NCS is not released.

The time between transactions in Multiplexed mode can be managed with
REQ2ACK_TIME[7:0] field in OCTOSPIM_CR register.

The following figure shows an example of two connected memories over two OCTOSPI
instances using only 13 pins thanks to the Multiplexed mode.

To enable the Multiplexed mode, at least one OCTOSPI I/O port signals and the CS signal
from the other port must be accessible.

Figure 11. OCTOSPI I/O manager Multiplexed mode

Note: The Multiplexed mode is only available on STM32L4P5xx/Q5xx, STM32H7A3/B3/B0,
STM32H72x/73x, STM32U5F9/U5G7/U5G9, STM32U595/U599/U5A/U5A9 and
STM32U575/585 devices.

MSv65660V1

O
C

T
O

S
P

I1

OCTOSPIM_P1_CLK

OCTOSPIM_P1_NCLK
OCTOSPIM_P1_DQS
OCTOSPIM_P1_IO[7:0]

OCTOSPIM_P1_NCS

O
C

T
O

S
P

I
I/

O
 m

a
n

a
g

e
r

O
C

T
O

S
P

I2

Memory 2

OCTOSPIM_P2_NCS

P
o

rt
1

P
o

rt
2

Memory 1

OCTOSPI and HSPI configuration AN5050

26/79 AN5050 Rev 8

5 OCTOSPI and HSPI configuration

In order to enable the read or write from external memory, the application must configure the
OCTOSPI/HSPI peripheral and the connected memory device.

There are some common and some specific configuration steps regardless of the low-level
protocol used (Regular-command or HyperBus protocol).

• OCTOSPI/HSPI common configuration steps:

– GPIOs and OCTOSPI I/O manager configuration

– interrupts and clock configuration

• OCTOSPI/HSPI specific configuration steps:

– OCTOSPI/HSPI I low-level protocol specific configurations (Regular-command or
HyperBus)

– memory device configuration

The following subsections describe all needed OCTOSPI/HSPI configuration steps to
enable the communication with external memories.

5.1 OCTOSPI and HSPI common configuration

This section describes the common steps needed to configure the OCTOSPI/HSPI
peripheral regardless of the used low-level protocol (Regular-command or HyperBus).

Note: It is recommended to reset the OCTOSPI/HSPI peripheral before starting a configuration.
This action also guarantees that the peripheral is in reset state.

5.1.1 GPIOs and OCTOSPI/HSPI I/Os configuration

The user has to configure the GPIOs to be used for interfacing with the external memory.
The number of GPIOs to be configured depends on the preferred hardware configuration
(Single-SPI, Dual-SPI, Quad-SPI, Dual-quad-SPI, Octo-SPI, dual octal-SPI or 16-bit).

Octo-SPI mode when one memory is connected

Ten GPIOs are needed. An additional GPIO for DQS is optional for the Regular-command
protocol and mandatory for the HyperBus protocol. An additional GPIO for differential clock
(NCLK) is also needed only in HyperBus protocol 1.8 V.

HSPI mode with single 16-bit configuration

21 GPIOs are needed, two additional GPIO for separate DQS data strobe/write mask
signals used: DQS0 for the eight IO[7:4]: and DQS1 for the eight IO[15:8].

An additional GPIO for differential clock (NCLK) is also needed only in HyperBus protocol
1.8 V.

AN5050 Rev 8 27/79

AN5050 OCTOSPI and HSPI configuration

78

Octo-SPI mode when two external octal memories are connected

• to one Octo-SPI interface using pseudo-static communication

Example: one HyperRAM and one HyperFlash connected to an STM32L5 series MCU
in single-ended clock, in order to execute code from the external HyperFlash at the
start of the application, then switch to the HyperRAM for data transfer.

The two memories must be connected to the same instance, then the CS pin of each
memory must be connected to an OCTOSPI_NCS GPIO port as demonstrated in the
figure below. This connection requires 12 GPIOs.

Figure 12. Connecting two memories to an Octo-SPI interface

• to two Octo-SPI interfaces

– with Multiplexed mode disabled/not supported: Each memory must be connected
to an OCTOSPI I/O manager port. It requires up to 24 GPIOs (see example in
Figure 10).

– with Multiplexed mode enabled: Both memories are connected to an OCTOSPI
I/O manager port. Only the second memory requires an additional GPIO for NCS
from the remaining OCTOSPI I/O manager port. It requires up to 13 GPIOs (see
example in Figure 11).

The user must select the proper package depending on its needs in terms of GPIOs
availability.

The OCTOSPI GPIOs must be configured to the correspondent alternate function. For more
details on OCTOSPI alternate functions availability versus GPIOs, refer to the alternate
function mapping table in the product datasheet.

Note: All GPIOs have to be configured in very high-speed configuration.

GPIOs configuration using STM32CubeMX

Thanks to the STM32CubeMX tool, the OCTOSPI peripheral and its GPIOs can be
configured very simply, easily and quickly. The STM32CubeMX is used to generate a project
with a preconfigured OCTOSPI. Section 6.2.3 details how to configure the OCTOSPI
GPIOs.

MSv64308V2

HyperRAM

HyperFlash

STM32L5 MCU
OCTOSPI1_CLK

OCTOSPI1_DQS

OCTOSPI1_IO[7..0]

OCTOSPI1_NCS PA2

PA4

Mandatory connection

OCTOSPI and HSPI configuration AN5050

28/79 AN5050 Rev 8

OCTOSPI I/O manager configuration

By default, after reset, all OCTOSPI1 and OCTOSPI2 signals are mapped respectively to
Port 1 and to Port 2.

The user can configure the OCTOSPIM_PnCR (n = 1 to 2) registers in order to select the
desired source signals for the configured port as shown in the following figure:

Figure 13. OCTOSPI I/O manager configuration

To enable the Multiplexed mode, the user must configure the OCTOSPIM_PnCR (n = 1 to 2)
registers in order to:

• select the desired port to be muxed in, for each specific signal
(CLK, DQS, IO[3:0], IO[7:4]) and enable it.

The remaining signals of not selected ports must be configured to unused in
Multiplexed mode and disabled.

• configure and enable NCS for both Port 1 and Port 2.

After configuring both OCTOSPIM_PnCR (n = 1 to 2) enable Multiplexed mode by setting
MUXEN bit in OCTOSPIM_CR, the user can also configure the REQ2ACK_TIME[7:0] to
define the time between two transactions.

During Multiplexed mode, configuring each OCTOSPI MAXTRAN feature allows the user:

• to limit an OCTOSPI to allocate the bus during all the data transaction precisely during
long burst (example: DMA2D bursts)

• to privilege or not an OCTOSPI throughput from another

Note: The OCTOSPI I/O manager is not supported in STM32L5 series products.
It is recommended, for each OCTOSPI instance, to enable at least MAXTRAN or Timeout
feature.

5.1.2 Interrupts and clocks configuration

This section describes the steps required to configure interrupts and clocks.

Enabling interrupts

Each OCTOSPI or HSPI peripheral has its dedicated global interrupt connected to the
NVIC.

MSv65662V1

O
C

TO
S

P
I2

O
C

TO
S

P
I1

OCTOSPIM Port1
Clock source
DQS source
NCS source

Data[3:0] source
Data[4:7] source

OCTOSPIM Port2
Clock source
DQS source
NCS source

Data[3:0] source
Data[4:7] source

OCTOSPIM_P1_GPIOs

OCTOSPIM_P2_GPIOs

AN5050 Rev 8 29/79

AN5050 OCTOSPI and HSPI configuration

78

To be able to use OCTOSPI1 and/or OCTOSPI2 and/or HSPI interrupts, the user must
enable the OCTOSPI1 and/or OCTOSPI2 and/or HSPI global interrupts on the NVIC side.

Once the global interrupts are enabled on the NVIC, each interrupt can be enabled
separately via its corresponding enable bit.

Clock configuration

Both OCTOSPI1 and OCTOSPI2 peripherals have the same clock source. Each peripheral
has its dedicated prescaler allowing the application to connect two different memories
running at different speeds. The following formula shows the relationship between
OCTOSPI /HSPI clock and the prescaler.

OCTOSPIx/HSPI_CLK = FClock_source / (PRESCALER + 1)

For instance, when the PRESCALER[7:0] is set to 2, OCTOSPIx/HSPI_CLK = FClock_source
/ 3.

In STM32L4+ and STM32L5 series devices, any of the three different clock sources,
(SYSCLK, MSI or PLLQ) can be used for OCTOSPI clock source.

In STM32U5 devices, any of the four clock sources, (SYSCLK, pll1_q_ck, pll2_q_ck,
pll3_r_ck) can be used for HSPI clock source and any of the four different clock sources
(SYSCLK, MSIK, pll1_q_ck, pll2_q_ck) can be used for OCTOSPI clock source.

In STM32H7A3/7B3/7B0 and STM32H72x/73x devices, any of the three different clock
sources, (rcc_hclk3, pll1_q_ck, pll2_r_ck, per_ck) can be used for OCTOSPI clock source.

The OCTOSPI/HSPI kernel clock and system clock can be completely asynchronous: as
example, when selecting the HSI source clock for system clock and the MSI source clock for
OCTOSPI kernel clock.

Note: The user must consider the frequency drift when using the MSI or HSI oscillator. Refer to
relevant datasheet for more details on MSI and HSI oscillator frequency drift.

The figure below illustrates the OCTOSPI1 and OCTOSPI2 clock scheme.

Figure 14. OCTOSPI1 and OCTOSPI2 clock scheme

Note: In STM32L5 and STM32U535/545 series, only OCTOSPI1 is supported.

MSv47765V2

Clock source

OCTOSPI1_CLKOCTOSPI1
PRESCALER[7:0]

OCTOSPI2
PRESCALER[7:0]

OCTOSPI2_CLK

OCTOSPI and HSPI configuration AN5050

30/79 AN5050 Rev 8

5.2 OCTOSPI/HSPI configuration for Regular-command protocol

The Regular-command protocol must be used when an external Single-SPI, Dual-SPI,
Quad-SPI, Dual-quad-SPI, Octo-SPI, Dual-octal, or 16-bit memory is connected to the
STM32.

The user must configure the following parameters:

• memory type: Micron, AP Memory, Macronix or Macronix RAM, or APmemory 16-bit
mode.

• device size: number of bytes in the device = 2[DEVSIZE+1]

• chip-select high time (CSHT): must be configured according to the memory datasheet.
CSHT is commonly named CS# Deselect Time and represents the period between two
successive operations in which the memory is deselected.

• clock mode: low (Mode 0) or high (Mode 3)

• clock prescaler: must be set to get the targeted operating clock

• DHQC: recommended when writing to the memory. It shifts the outputs by a 1/4
OCTOSPI clock cycle and avoids hold issues on the memory side.

• SSHIFT: can be enabled when reading from the memory in SDR mode but must not be
used in DTR mode. When enabled, the sampling is delayed by one more 1/2
OCTOSPI/HSPI clock cycle enabling more relaxed input timings.

• CSBOUND: can be used to limit a transaction of aligned addresses in order to respect
some memory page boundary crossing.

• REFRESH: used with PSRAM memories products to enable the refresh mechanism.

5.3 OCTOSPI/HSPI configuration for HyperBus protocol

The HyperBus protocol must be used when an external HyperRAM or HyperFlash memory
is connected to the STM32.

The user must configure the following parameters:

• memory type: HyperBus

• device size: number of bytes in the device = 2[DEVSIZE+1]

• chip-select high time (CSHT): must be configured according to the memory datasheet.
CSHT is commonly named CS# Deselect Time and represents the period between two
successive operations in which the memory is deselected.

• clock mode low (Mode 0) or high (Mode 3)

• clock prescaler: must be set to get the targeted operating clock

• DTR mode: must be enabled for HyperBus

• DHQC: recommended when writing to the memory. It shifts the outputs by a 1/4
OCTOSPI/HSPI clock cycle and avoids hold issues on the memory side.

• SSHIFT: must be disabled since HyperBus operates in DTR mode

• read-write recovery time (tRWR): used only for HyperRAM and must be configured
according to the memory device

• initial latency (tACC): must be configured according to the memory device and the
operating frequency

• latency mode: fixed or variable latency

• latency on write access: enabled or disabled

AN5050 Rev 8 31/79

AN5050 OCTOSPI and HSPI configuration

78

• for HyperBus 16-bit mode, it is required to configure the DMODE[2:0] field

• CSBOUND: can be used to limit a transaction of aligned addresses in order to respect
some memory page boundary crossing

• REFRESH: used with HyperRAM memories to enable the refresh mechanism

5.4 Memory configuration

The external memory device must be configured depending on the targeted operating
mode. This section describes some commonly needed configurations for HyperBus/Regular
mode, Octo-SPI/16-bit memories.

5.4.1 Memory device configuration

It is common that the application needs to configure the memory device. An example of
commonly needed configurations is presented below:

1. Set the dummy cycles according to the operating speed (see relevant memory device
datasheet).

2. Enable the Octo-SPI mode or 16-bit mode.

3. Enable DTR mode.

Note: It is recommended to reset the memory device before the configuration. In order to reset the
memory, a reset enable command then a reset command must be issued.

For Octo-SPI AP Memory device configuration, the delay block must be enabled to
compensate the DQS skew. For detailed examples, refer to Section 6.

5.4.2 HyperBus memory device configuration

The HyperBus memory device contains the following addressable spaces:

• a register space

• a memory space

Before accessing the memory space for data transfers, the HyperBus memory device must
be configured by accessing its register space when setting MTYP[2:0] = 0b101 in the
OCTOSPI_DCR1 or HSPI_DCR1 register.

When memory voltage range is 1.8 V, HyperBus requires differential clock and the NCLK pin
must be configured.

Here below an example of HyperBus device parameters in the configuration register fields
of the memory:

• Deep power-down (DPD) operation mode

• Initial latency count (must be configured depending on the memory clock speed)

• Fixed or variable latency

• Hybrid wrap option

• Wrapped burst length and alignment

OCTOSPI application examples AN5050

32/79 AN5050 Rev 8

6 OCTOSPI application examples

This section provides some typical OCTOSPI implementation examples with
STM32L4P5xx/Q5xx products, and STM32CubeMX examples using the STM32L4P5G-DK
Discovery kit for the STM32L4P5AGI6PU microcontroller.

6.1 Implementation examples

This section describes the following typical OCTOSPI use case examples:

• using OCTOSPI in a graphical application with Multiplexed mode

• code execution from Octo-SPI memory

6.1.1 Using OCTOSPI in a graphical application

The STM32L4P5xx/Q5xx products embed two independent OCTOSPI peripherals that
enable the connection of two external memories.

This configuration is ideal for graphical applications on small packages, where:

• An HyperFlash memory is connected to OCTOSPI2 that is used to store graphical
primitives.

• An HyperRAM memory is connected to OCTOSPI1 that is used to build frame buffer.

• Both OCTOSPI1 and OCTOSPI2 must be configured in HyperBus Memory-mapped
mode, with Multiplexed mode enabled.

• Any AHB master (such as CPU, LTDC, DMA2D or SDMMC1/2) can autonomously
access to both memories, exactly like an internal memory.

The figure below gives a use-case example of a multi-chip module connecting two
HyperBus memories (HyperRAM and HyperFlash) over 12 pins (HyperBus single-ended
clock) to a STM32L4Pxxx/Qxxx in LQFP48 package, for a graphical application with the
OCTOSPI I/O manager Multiplexed mode enabled.

AN5050 Rev 8 33/79

AN5050 OCTOSPI application examples

78

Figure 15. OCTOSPI graphic application use case

6.1.2 Executing from external memory: extend internal memory size

Using the external Octo-SPI memory permits to extend the available memory space for the
total application.

To execute code from an external memory, the following is needed:

• The application code must be placed in the external memory.

• The OCTOSPI must be configured in Memory-mapped mode during the system
initialization before jumping to the Octo-SPI memory code.

As illustrated in the figure below, the CPU can execute code from the external memory
connected to OCTOSPI2, while in parallel DMA2D and LTDC access to the memory
connected to OCTOSPI1 for graphics.

By default OCTOSPI1 and OCTOSPI2 are accessed by the Cortex-M4 through S-bus. In
order to boost execution performances, physical remap to 0x0000 0000 can be enabled for
OCTOSPI2, allowing execution through I-bus and D-bus.

MSv64343V1

OCTOSPI2OCTOSPI1

Port 1Port 2

OCTOSPI I/OManager

8-bit bus width(12 pins)

Multi chip module embedding HyperFlash + HyperRAM

- Graphic primitives in HyperFlash

- Framebuffer in HyperRAM

48pins

Audio codec

Audio

SAI (4 pins)

RGB222

(11 pins)

Cortex_M4 Chrom_ART
DMA2D LTDC

FLASH
(up to

1 Mbyte)

RAM
(320

Kbytes)

I2C (3 pins)

OCTOSPI application examples AN5050

34/79 AN5050 Rev 8

Figure 16. Executing code from memory connected to OCTOSPI2

6.2 OCTOSPI configuration with STM32CubeMX

This section shows examples of basic OCTOSPI configuration based on the
STM32L4P5G-DK Discovery kit:

• Regular-command protocol in Indirect mode for programming and in Memory-mapped
mode for reading from Octo-SPI flash memory

• Regular-command protocol in Memory-mapped mode for writing and reading from the
Octo-SPI PSRAM

• Regular-command protocol in Memory-mapped mode for writing and reading from the
Quad-SPI PSRAM

• Two HyperBus protocols in Memory-mapped mode multiplexed over the same bus for
reading from HyperFlash and HyperRAM memories

Note: In order to reproduce the two HyperBus in Multiplexed mode example and the Quad-SPI
PSRAM example, some modifications are required on the board, and related memories
need to be soldered. For more details on STM32L4P5G-DK Discovery kit, refer to the user
manual Discovery kit with STM32L4P5AG MCU (UM2651).

6.2.1 Hardware description

The STM32L4P5G-DK Discovery kit embeds the Octal-SPI Macronix Flash and the
Octo-SPI AP Memory PSRAM. Thanks to the STM32L4P5G-DK PCB flexibility, it also
allows the user to solder and test other memories:

• any Octo-SPI memory with the same footprint (BGA24)

• differential and single-ended clock memories (VDD memory adjustable 1.8V or 3.3V)

• dual-die MCP memories (such Cypress HyperRAM + HyperFlash MCP)

• Quad-SPI memory on U14 footprint (SOP8)

MSv47767V4

Cortex-M4
with FPU DMA1 DMA2

D
-b

us

ICode

DCode

DMA2D

I-b
us

BusMatrix-S

LCD-TFT SDMMC1 SDMMC2

SRAM2

SRAM1

FLASH

OCTOSPI2

SRAM3

OCTOSPI1

Execution from OCTOSPI2 with physical remap enabled

Execution from OCTOSPI2 without physical remap

S
-b

us

PSRAM
memory

Octo-SPI
Flash memory

DMA2D building framebuffer on HyperRAM memory (OCTOSPI1)

LTDC fetching framebuffer from HyperRAM memory (OCTOSPI1)

A
C

C
E

L

AN5050 Rev 8 35/79

AN5050 OCTOSPI application examples

78

For more details, refer to the user manual Discovery kit with STM32L4P5AG MCU
(UM2651).

The next examples show how to configure the following memories using the
STM32CubeMX:

• Macronix MX25LM51245GXDI0A Octo-SPI flash memory connected to
OCTOSPIM Port 2.

• AP Memory APS6408L-30B-BA Octo-SPI PSRAM memory connected to
OCTOSPIM Port 1

• Cypress HyperBus MCP (S71KL256SC0) embedding HyperRAM and HyperFlash
memories connected to OCTOSPIM Port 1 (in Multiplexed mode)

• AP Memory APS1604M-3SQR Quad-SPI PSRAM memory connected to
OCTOSPIM Port 1

As shown in the figure below, the Octo-SPI Macronix Flash memory and the Octo-SPI
AP Memory PSRAM are connected to the MCU, using each one of them eleven pins:

• OCTOSPI_NCS

• OCTOSPI_CLK

• OCTOSPI_DQS

• OCTOSPI_IO[0..7]

The OCTOSPI_RESET pin, connected to the global MCU reset pin (NRST), can be used to
reset the memory.

Figure 17. Octo-SPI flash memory and PSRAM connection on STM32L4P5G-DK

MSv65664

OCTOSPI application examples AN5050

36/79 AN5050 Rev 8

Note: To test the HyperBus MCP Cypress memory S71KL256SC0, it must replace
one of the existing Octo-SPI Macronix or Octo-SPI AP Memory.
To test the AP Memory APS1604M-3SQR Quad-SPI PSRAM memory, it must
be soldered in the U14 footprint position. For more details, refer to the user
manual Discovery kit with STM32L4P5AG MCU (UM2651).

6.2.2 Use case description

The adopted configuration for each example is the following:

• Octo-SPI AP Memory PSRAM:

– OCTOSPI1 signals mapped to Port 1 (AP Memory PSRAM), so OCTOSPI1 must
be set to Regular-command protocol

– DTR Octo-SPI mode (with DQS) with OCTOSPI1 running at 60 MHz

– Write/read in Memory-mapped mode

• Octo-SPI Macronix Flash:

– OCTOSPI2 signals mapped to Port 2 (nor Macronix Flash), so OCTOSPI2 must
be set to Regular-command protocol

– DTR Octo-SPI mode (with DQS) with OCTOSPI2 running at 60 MHz

– Programming the memory in Indirect mode and reading in Memory-mapped mode

• Quad-SPI AP Memory PSRAM:

– OCTOSPI1 signals mapped to Port 1 (AP Memory PSRAM), so OCTOSPI1 must
be set to Regular-command protocol

– STR Quad-SPI mode with OCTOSPI1 running at 60 MHz

– Write/read in Memory-mapped mode

• Cypress MCP HyperFlash and HyperRAM:

– OCTOSPI1 and OCTOSPI2 signals muxed over Port 1, OCTOSPIM_P1_NCS
used to access HyperRAM and OCTOSPIM_P2_NCS used to access
HyperFlash. OCTOSPI1 and OCTOSPI2 must configured in HyperBus command
protocol Multiplexed mode.

– OCTOSPI1 and OCTOSPI2 with HyperBus protocol running at 60 MHz

– CPU and DMA reading in Memory-mapped mode in concurrence with Multiplexed
mode from the two external memories

The examples described later on the Regular-command and HyperBus protocols for
OCTOSPI1 and OCTOSPI2, are based on STM32CubeMX:

• GPIO and OCTOSPI I/O manager configuration

• Interrupts and clock configuration

Each example has the following specific configurations:

• OCTOSPI peripheral configuration

• Memory device configuration

AN5050 Rev 8 37/79

AN5050 OCTOSPI application examples

78

6.2.3 OCTOSPI GPIOs and clocks configuration

This section describes the needed steps to configure the OCTOSPI1 and OCTOSPI2
GPIOs and clocks.

In this section, figures describe the steps to follow and the tables contain the exact
configuration to be used in order to run the example

I. STM32CubeMX: GPIOs configuration

Referring to Figure 17, the STM32CubeMX configuration examples are based on the
connection detailed in the table below.

Based on this hardware implementation, the user must configure all the GPIOs shown in
Figure 17.

Table 5. STM32CubeMX - Memory connection port

Memory OCTOSPI I/O manager port

Octo-SPI PSRAM AP Memory(1)

 APS6408L-30B-BA

1. Already Available on STM32L4P5G-DK Discovery kit.

Port 1

Octo-SPI Macronix Flash(1)
MX25LM51245GXDI00

Port 2

HyperBus MCP Cypress memory(2)
S71KL256SC0 Including both HyperRAM and
HyperFlash

2. Soldered in U11 (see Figure 17).

Multiplexed over Port 1:

– OCTOSPIM_P1_NCS connected to HyperRAM

– OCTOSPIM_P2_NCS connected to HyperFlash

Quad-SPI PSRAM AP Memory(3)

APS1604M-3SQR

3. Soldered in U14 (see Figure 17).

Port 1

OCTOSPI application examples AN5050

38/79 AN5050 Rev 8

STM32CubeMX: OCTOSPI GPIOs configuration

Once the STM32CubeMX project is created for the STM32L4P5AG product, the user must
follow the steps below:

1. Select the Pinout and Configuration tab and, under Connectivity, uncollapse the
OCTOSPI1 or OCTOSPI2 as shown in the figure below, then configure it by referencing
to Table 6.

Figure 18. STM32CubeMX - Octo-SPI mode window for OCTOSPI1 or OCTOSPI2

2. Depending on the memory used, configure the OCTOSPI signals and mode as detailed
in the following table.

 X

Table 6. STM32CubeMX - Configuration of OCTOSPI signals and mode

Parameter

Memory

HyperBus MCP Cypress
memory

S71KL256SC0(1)

Octo-SPI PSRAM
AP Memory

APS6408L-30B
-BA

Octo-SPI Flash

Macronix

MX25LM51245
GXDI00

Quad-SPI
PSRAM

AP Memory

APS1604M
-3SQR

Instance OCTOSPI1 OCTOSPI2 OCTOSPI1 OCTOSPI2 OCTOSPI1

Mode
HyperBus

--Multiplexed-
Octo-SPI Quad-SPI

Clock
Port 1 CLK

--Multiplexed-
Port 1 CLK Port 2 CLK Port 1 CLK

HyperBus 1.8
inverted clock

Disable

Chip select Port 1 NCS Port 2 NCS Port 1 NCS Port 2 NCS Port 1 NCS

MSv65665V1Note: Pink color highlight key items.

AN5050 Rev 8 39/79

AN5050 OCTOSPI application examples

78

The configured GPIOs must match the memory connection as shown in Figure 17. If the
configuration is not correct, the user must manually configure all the GPIOs, one by one, by
clicking directly on each pin.

The figure below shows how to configure manually the PE13 pin to OCTOSPIM_P1_IO1
alternate function (AF).

Figure 19. STM32CubeMX - Setting PE13 pin to OCTOSPIM_P1_IO1 AF

Data strobe
Port 1 DQS (RWDS)

--MULTIPLEXED-
Port 1 DQS

(RWDS)
Port 2 DQS

(RWDS)
Disable

Data[3:0]
Port 1 IO[3:0]

--MULTIPLEXED-
Port 1 IO[3:0] Port 2 IO[3:0] Port 1 IO[3:0]

Data[7:4]
Port 1 IO[7:4]

--MULTIPLEXED-
Port 1 IO[7:4] Port 2 IO[7:4] Disable

1. This configuration provides access to both of HyperFlash and HyperRAM memories in Multiplexed mode.

Table 6. STM32CubeMX - Configuration of OCTOSPI signals and mode (continued)

Parameter

Memory

HyperBus MCP Cypress
memory

S71KL256SC0(1)

Octo-SPI PSRAM
AP Memory

APS6408L-30B
-BA

Octo-SPI Flash

Macronix

MX25LM51245
GXDI00

Quad-SPI
PSRAM

AP Memory

APS1604M
-3SQR

MSv65666V1Note: Pink color highlight key items.

OCTOSPI application examples AN5050

40/79 AN5050 Rev 8

3. Configuring OCTOSPI GPIOs to very-high speed:

a) Depending on the selected instance OCTOSPI1 or OCTOSPI2, in the
Configuration window, select the GPIO settings tab as shown in the figure below:

Figure 20. STM32CubeMX - GPIOs setting window

b) Scroll down the window and make sure that the output speed is set to "very high"
for all the GPIOs.

Figure 21. STM32CubeMX - Setting GPIOs to very-high speed

MSv65667V1

Note: Pink color highlight key items.
 Same steps needed if OCTOSPI2 is used.

MSv65668V1
Note: Pink color highlight key items.
 Same steps needed if OCTOSPI2 is used.

AN5050 Rev 8 41/79

AN5050 OCTOSPI application examples

78

II. STM32CubeMX: Enabling interrupts

As previously described in Section 5.1.2: Interrupts and clocks configuration, each
OCTOSPI peripheral has its dedicated global interrupt connected to the NVIC, so each
peripheral interrupt must be enabled separately.

Depending on the selected instance OCTOSPI1 or OCTOSPI2, In the OCTOSPI
Configuration window (see the figure below), select the NVIC settings tab then check the
OCTOSPI global interrupts.

Figure 22. STM32CubeMX - Enabling OCTOSPI global interrupt

III. STM32CubeMX: clocks configuration

In this example, the system clock is configured as shown below:

• Main PLL is used as system source clock.

• SYSCLK and HCLK set to 120 MHz, so Cortex-M4 and AHB operate at 120 MHz.

As previously described in Section 5.1.2: Interrupts and clocks configuration, both
OCTOSPI peripherals have the same clock source, but each one has its dedicated
prescaler allowing the connection of two memories running at different speeds.

In this example, the SYSCLK is used as clock source for OCTOSPI1 and OCTOSPI2.

MSv65669V1
Note: Pink color highlight key items.
 Same steps needed if OCTOSPI2 is used.

OCTOSPI application examples AN5050

42/79 AN5050 Rev 8

• System clock configuration:

a) Select the clock configuration tab.

b) In the Clock configuration tab, set the PLLs and the prescalers to get the system
clock at 120 MHz as shown in the figure below.

Figure 23. STM32CubeMX - System clock configuration

• OCTOSPI clock source configuration: In the Clock configuration tab, select the
SYSCLK clock source (see the figure below).

Figure 24. STM32CubeMX - OCTOSPI1 and OCTOSPI2 clock source configuration

With this configuration, OCTOSPI1 and OCTOSPI2 are clocked by SYSCLK@120 MHz.
Then, for each peripheral, the prescaler is configured to get the 60 MHz targeted speed (see
Section 6.2.4: OCTOSPI configuration and parameter settings).

MSv65670V1Note: Pink color highlight key items.

System clock multiplexer

AHB prescalerSYSCLK (MHz) HCLK (MHz)

MSv65671V1Note: Pink color highlight key items.

OCTOSPI clock multiplexer

To OCTOSPI
(MHz)

AN5050 Rev 8 43/79

AN5050 OCTOSPI application examples

78

6.2.4 OCTOSPI configuration and parameter settings

Once all of the OCTOSPI GPIOs and the clock configuration have been done, the user must
configure the OCTOSPI depending on the used external memory and its communication
protocol.

1. In the OCTOSPI Configuration window, select the Parameter Settings tab as shown in
the figure below and configure it by referencing to Table 7.

Figure 25. STM32CubeMX - OCTOSPI configuration window

2. Configure the OCTOSPI parameters depending on the memory used.

MSv65672V1Note: Pink color highlight key items.

Table 7. STM32CubeMX - Configuration of OCTOSPI parameters

OCTOSPI parameter

Memory

HyperBus MCP Cypress
memory S71KL256SC0

Octal-SPI PSRAM
AP Memory

APS6408L-30B
-BA

Octal-SPI Flash

Macronix

MX25LM51245
GXDI00

Quad-SPI
PSRAM

AP Memory

APS1604M
-3SQR

Instance OCTOSPI1 OCTOSPI2 OCTOSPI1 OCTOSPI2 OCTOSPI1

Multiplexed

Switching duration clock
number(1) 1 N/A

Generic

FIFO threshold 1

Dual mode Disable

Memory type HyperBus AP Memory Macronix Micron(2)

OCTOSPI application examples AN5050

44/79 AN5050 Rev 8

3. Build and run the project: At this stage, the user can build, debug and run the project.

Device size(3) 23

(8 Mbytes)

25

(32 Mbytes)

23

(8 Mbytes)

26

(64 Mbytes)

21

(2 Mbytes)

Chip select high time(4) 1 3 2

Free running clock Disabled

Clock mode Low

Clock prescaler(5) 2

Sample shifting(6) No sample shifting
Sample shifting

half-cycle

Delay hold quarter cycle(7) Enabled Disable

Chip select boundary(8) 0 10 (1 Kbyte) 0

Refresh rate(9) 241 (4 μs) 0 241 (4 μs) 0 482 (8 μs)

HyperBus

RW recovery time(10) 3

N/A
Access time(11) 6

Write zero latency(12) Enable

Latency mode(13) Fixed

1. Switching duration clock number (REQ2ACK_TIME) defining, in Multiplexed mode, the time between two transactions. The
value is the number of the OCTOSPI clock cycles.

2. The memory type has no impact in Quad-SPI mode.

3. Device size (DEVSIZE) defines the memory size in number of bytes = 2(DEVSIZE+1).

4. Chip select high time (CSHT) defines the chip-select minimum high time in number of clock cycles, configured depending
on the memory datasheet.

5. The system clock prescaler (120MHz) / clock prescaler (2 MHz) = OCTOSPI clock frequency (60MHz).

6. Sample shifting (SSHT) recommended to be enabled in STR mode and disabled in DTR mode.

7. Delay hold quarter cycle (DHQC) enabled in DTR mode and disabled in STR mode.

8. Chip select boundary (CSBOUND) configured depending on the memory datasheet. The chip select must go high when
crossing the page boundary (2CSBOUND bytes defines the page size).

9. Refresh rate (REFRESH) required for PSRAMs memories. The chip select must go high each (REFRECH x OCTOSPI
clock cycles), configured depending on the memory datasheet.

10. Read/write recovery time (TRWR) define the device read/write recovery time, expressed in number of OCTOSPI clock
cycle, configured depending on the memory datasheet.

11. Access time (TACC) is expressed in number of OCTOSPI clock cycles, configured depending on the memory datasheet.

12. Write zero latency enabled (WZL) defines the latency on write accesses.

13. The latency mode (LM) is configured to fixed latency, depending on the memory datasheet.

Table 7. STM32CubeMX - Configuration of OCTOSPI parameters (continued)

OCTOSPI parameter

Memory

HyperBus MCP Cypress
memory S71KL256SC0

Octal-SPI PSRAM
AP Memory

APS6408L-30B
-BA

Octal-SPI Flash

Macronix

MX25LM51245
GXDI00

Quad-SPI
PSRAM

AP Memory

APS1604M
-3SQR

AN5050 Rev 8 45/79

AN5050 OCTOSPI application examples

78

6.2.5 STM32CubeMX: Project generation

Once all of the GPIOs, the clock and the OCTOSPI configurations have been done, the user
must generate the project with the desired toolchain (such as STM32CubeIDE, EWARM or
MDK-ARM).

Indirect and Memory-mapped mode configuration

At this stage, the project must be already generated with GPIOs and OCTOSPI properly
configured following the steps detailed in Section 6.2.3 andSection 6.2.4.

I. Octo-SPI PSRAM in Regular-command protocol example

In order to configure the OCTOSPI1 in Memory-mapped mode and to configure the external
Octo-SPI PSRAM AP Memory allowing communication in DTR Octo-SPI mode (with DQS),
some functions must be added to the project. Code can be added to the main.c file (see
code below) or defines can be added to the main.h file (see Adding defines to the main.h
file).

• Adding code to the main.c file

Open the already generated project and follow the steps described below:

Note: Update the main.c file by inserting the lines of code to include the needed functions in the
adequate space indicated in green bold below. This task avoids loosing the user code in
case of project regeneration.

a) Insert variables declarations in the adequate space (in green bold below).

/* USER CODE BEGIN PV */

/*buffer that we will write n times to the external memory, user can modify
the content to write his desired data*/

/* Private variables ---*/

uint8_t aTxBuffer[] = " **OCTOSPI/Octal-spi PSRAM Memory-mapped
communication example** **OCTOSPI/Octal-spi PSRAM Memory-mapped
communication example** **OCTOSPI/Octal-spi PSRAM Memory-mapped
communication example** **OCTOSPI/Octal-spi PSRAM Memory-mapped
communication example**";

/* USER CODE END PV */

b) Insert the functions prototypes in the adequate space (in green bold below).

/* USER CODE BEGIN PFP */

/* Private function prototypes --*/

void EnableMemMapped(void);

void DelayBlock_Calibration(void);

/* USER CODE END PFP */

c) Insert the functions to be called in the main() function, in the adequate space (in
green bold below).

OCTOSPI application examples AN5050

46/79 AN5050 Rev 8

/* USER CODE BEGIN 1 */

__IO uint8_t *mem_addr;

uint32_t address = 0;

uint16_t index1;/*index1 counter of bytes used when reading/

writing 256 bytes buffer */

uint16_t index2;/*index2 counter of 256 bytes buffer used when reading/

writing the 1Mbytes extended buffer */

/* USER CODE END 1 */

/* USER CODE BEGIN 2 */

/*--*/

/*Enable Memory Mapped Mode*/

EnableMemMapped();

/*--*/

/*Enable the Delay Block Calibration*/

DelayBlock_Calibration();

/*--*/

/* Writing Sequence of 1Mbyte */

mem_addr = (__IO uint8_t *)(OCTOSPI1_BASE + address);

/*Writing 1Mbyte (256Byte BUFFERSIZE x 4096 times) */

for (index2 = 0; index2 < EXTENDEDBUFFERSIZE/BUFFERSIZE; index2++)

{

for (index1 = 0; index1 < BUFFERSIZE; index1++)

{

*mem_addr = aTxBuffer[index1];

mem_addr++;

}

}

/*--*/

/* Reading Sequence of 1Mbyte */

mem_addr = (__IO uint8_t *)(OCTOSPI1_BASE + address);

/*Reading 1Mbyte (256Byte BUFFERSIZE x 4096 times)*/

for (index2 = 0; index2 < EXTENDEDBUFFERSIZE/BUFFERSIZE; index2++) {

for (index1 = 0; index1 < BUFFERSIZE; index1++)

{

if (*mem_addr != aTxBuffer[index1])

{

/*if data read is corrupted we can toggle a led here: example blue led*/

}

mem_addr++;

}

}

/*if data read is correct we can toggle a led here: example green led*/

/* USER CODE END 2 */

AN5050 Rev 8 47/79

AN5050 OCTOSPI application examples

78

d) Insert the function definitions, called in the main(), in the adequate space (in
green bold below).

/* USER CODE BEGIN 4 */

/*--*/

/* This function enables memory-mapped mode for Read and Write operations */

void EnableMemMapped(void)

{

OSPI_RegularCmdTypeDef sCommand;

OSPI_MemoryMappedTypeDef sMemMappedCfg;

sCommand.FlashId = HAL_OSPI_FLASH_ID_1;

sCommand.InstructionMode = HAL_OSPI_INSTRUCTION_8_LINES;

sCommand.InstructionSize = HAL_OSPI_INSTRUCTION_8_BITS;

sCommand.InstructionDtrMode = HAL_OSPI_INSTRUCTION_DTR_DISABLE;

sCommand.AddressMode = HAL_OSPI_ADDRESS_8_LINES;

sCommand.AddressSize = HAL_OSPI_ADDRESS_32_BITS;

sCommand.AddressDtrMode = HAL_OSPI_ADDRESS_DTR_ENABLE;

sCommand.AlternateBytesMode = HAL_OSPI_ALTERNATE_BYTES_NONE;

sCommand.DataMode = HAL_OSPI_DATA_8_LINES;

sCommand.DataDtrMode = HAL_OSPI_DATA_DTR_ENABLE;

sCommand.DQSMode = HAL_OSPI_DQS_ENABLE;

sCommand.SIOOMode = HAL_OSPI_SIOO_INST_EVERY_CMD;

sCommand.Address = 0;

sCommand.NbData = 1;

/* Memory-mapped mode configuration for Linear burst write operations */

sCommand.OperationType = HAL_OSPI_OPTYPE_WRITE_CFG;

sCommand.Instruction = LINEAR_BURST_WRITE;

sCommand.DummyCycles = DUMMY_CLOCK_CYCLES_SRAM_WRITE;

if (HAL_OSPI_Command(&hospi1, &sCommand, HAL_OSPI_TIMEOUT_DEFAULT_VALUE) !=
HAL_OK)

{

Error_Handler();

}

/* Memory-mapped mode configuration for Linear burst read operations */

sCommand.OperationType = HAL_OSPI_OPTYPE_READ_CFG;

sCommand.Instruction = LINEAR_BURST_READ;

sCommand.DummyCycles = DUMMY_CLOCK_CYCLES_SRAM_READ;

if (HAL_OSPI_Command(&hospi1, &sCommand, HAL_OSPI_TIMEOUT_DEFAULT_VALUE) !=
HAL_OK)

{

Error_Handler();

}

/*Disable timeout counter for memory mapped mode*/

OCTOSPI application examples AN5050

48/79 AN5050 Rev 8

sMemMappedCfg.TimeOutActivation = HAL_OSPI_TIMEOUT_COUNTER_DISABLE;

/*Enable memory mapped mode*/

if (HAL_OSPI_MemoryMapped(&hospi1, &sMemMappedCfg) != HAL_OK)

{

Error_Handler();

}

}

/*--*/

/*This function is used to calibrate the Delayblock before initiating
USER's application read/write transactions*/

void DelayBlock_Calibration(void)

{

/*buffer used for calibration*/

uint8_t Cal_buffer[] = " ****Delay Block Calibration Buffer**** ****Delay
Block Calibration Buffer**** ****Delay Block Calibration Buffer****
****Delay Block Calibration Buffer**** ****Delay Block Calibration
Buffer**** ****Delay Block Calibration Buffer**** ";

uint16_t index;

__IO uint8_t *mem_addr;

uint8_t test_failed;

uint8_t delay = 0x0;

uint8_t Min_found = 0;

uint8_t Max_found = 0;

uint8_t Min_Window = 0x0;

uint8_t Max_Window = 0xF;

uint8_t Mid_window = 0;

uint8_t calibration_ongoing = 1;

/* Write the Cal_buffer to the memory*/

mem_addr = (__IO uint8_t *)(OCTOSPI1_BASE);

for (index = 0; index < DLYB_BUFFERSIZE; index++)

{

*mem_addr = Cal_buffer[index];

mem_addr++;

}

while (calibration_ongoing)

{

/* update the Delayblock calibration */

HAL_RCCEx_OCTOSPIDelayConfig(delay, 0);

test_failed = 0;

mem_addr = (__IO uint8_t *)(OCTOSPI1_BASE);

for (index = 0; index < DLYB_BUFFERSIZE; index++)

{

/* Read the Cal_buffer from the memory*/

if (*mem_addr != Cal_buffer[index])

{

/*incorrect data read*/

AN5050 Rev 8 49/79

AN5050 OCTOSPI application examples

78

test_failed = 1;

}

mem_addr++;

}

/* search for the Min window */

if (Min_found!=1)

{

if (test_failed == 1)

{

if (delay < 15)

{

delay++;

}

else

{

/* If delay set to maximum and error still detected: can't use external
PSRAM */

Error_Handler();

}

}

else

{

Min_Window = delay;

Min_found=1;

delay = 0xF;

}

}

/* search for the Max window */

else if (Max_found!=1)

{

if (test_failed == 1)

{

if (delay > 0)

{

delay--;

}

else

{

/* If delay set to minimum and error still detected: can't use external
PSRAM */

Error_Handler();

}

}

else

{

OCTOSPI application examples AN5050

50/79 AN5050 Rev 8

Max_Window = delay;

Max_found=1;

}

}

/* min and max delay window found, configure the delay block with the middle
window value and exit calibration */

else

{

Mid_window = (Max_Window+Min_Window)/2;

HAL_RCCEx_OCTOSPIDelayConfig(Mid_window, 0);

/* exit calibration */

calibration_ongoing = 0;

}

}

}

/* USER CODE END 4 */

• Adding defines to the main.h file

Update the main.h file by inserting the defines in the adequate space (in green bold below).

/* USER CODE BEGIN Private defines */

/*APS6408L-3OB PSRAM APmemory*/

#define LINEAR_BURST_READ 0x20

#define LINEAR_BURST_WRITE 0xA0

#define DUMMY_CLOCK_CYCLES_SRAM_READ 5

#define DUMMY_CLOCK_CYCLES_SRAM_WRITE 4

/* Exported macro ---*/

#define BUFFERSIZE (COUNTOF(aTxBuffer) - 1)

#define COUNTOF(__BUFFER__) (sizeof(__BUFFER__) / sizeof(*(__BUFFER__)))

#define DLYB_BUFFERSIZE (COUNTOF(Cal_buffer) - 1)

#define EXTENDEDBUFFERSIZE (1048576)

/* USER CODE END Private defines */

• Code is now ready, built and run.

II. Octo-SPI FLASH in Regular-command protocol example

In order to configure the OCTOSPI2 in Indirect/Memory-mapped mode and to configure the
external Octo-SPI Macronix Flash memory allowing communication in DTR Octo-SPI mode
(with DQS), some functions must be added to the project. Code can be added to the main.c
file (see code below) or defines can be added to the main.h file (see Adding defines to the
main.h file).

• Adding code to the main.c file

Open the already generated project and follow the steps described below:

AN5050 Rev 8 51/79

AN5050 OCTOSPI application examples

78

Note: Update the main.c file by inserting the lines of code to include the needed functions in the
adequate space indicated in green bold below. This task avoids loosing the user code in
case of project regeneration.

a) Insert variables declarations in the adequate space (in green bold below).

/* USER CODE BEGIN PV */

/* Private variables --*/

uint8_t aTxBuffer[]=" Programming in indirect mode - Reading in memory-
mapped mode ";

__IO uint8_t *nor_memaddr = (__IO uint8_t *)(OCTOSPI2_BASE);

__IO uint8_t aRxBuffer[BUFFERSIZE] ="";

/* USER CODE END PV */

b) Insert the functions prototypes in the adequate space (in green bold below).

/* USER CODE BEGIN PFP */

/* Private function prototypes ---------------------------------------*/

void WriteEnable(void);

void OctalWriteEnable(void);

void OctalDTR_MemoryCfg(void);

void OctalSectorErase(void);

void OctalDTR_MemoryWrite(void);

void AutoPollingWIP(void);

void OctalPollingWEL(void);

void OctalPollingWIP(void);

void EnableMemMapped(void);

/* USER CODE END PFP */

c) Insert the functions to be called in the main() function, in the adequate space (in
green bold below).

/* USER CODE BEGIN 1 */

uint16_t index1;

/* USER CODE END 1 */

OCTOSPI application examples AN5050

52/79 AN5050 Rev 8

/* USER CODE BEGIN 2 */

/*--*/

/*-------------- MX25LM51245G memory configuration --------------*/

/* Configure MX25LM51245G memory to DTR Octal I/O mode */

OctalDTR_MemoryCfg();

/*--*/

/*----------------------- Erasing the first sector ----------------------*/

/* Enable writing to memory using Octal Write Enable cmd */

OctalWriteEnable();

/* Enable Octal Software Polling to wait until WEL=1 */

OctalPollingWEL ();

/* Erasing first sector using Octal erase cmd */

OctalSectorErase();

/* Enable Octal Software Polling to wait until memory is ready WIP=0*/

OctalPollingWIP();

/*--*/

/*--------------------- Programming operation ----------------------*/

/* Enable writing to memory using Octal Write Enable cmd */

OctalWriteEnable();

/* Enable Octal Software Polling to wait until WEL=1 */

OctalPollingWEL();

/* Writing (using CPU) the aTxBuffer to the memory */

OctalDTR_MemoryWrite();

/* Enable Octal Software Polling to wait until memory is ready WIP=0*/

OctalPollingWIP();

/*---*/

/*------ Configure memory-mapped Octal SDR Read/write ------*/

EnableMemMapped();

/*--*/

/*---------------- Reading from the NOR memory ------------------*/

for(index = 0; index < BUFFERSIZE; index++)

{

/* Reading back the written aTxBuffer in memory-mapped mode */

aRxBuffer[index] = *nor_memaddr;

if(aRxBuffer[index] != aTxBuffer[index])

{

/* Can add code to toggle a LED when data doesn't match */

}

nor_memaddr++;

}

/*--*/

/* USER CODE END 2 */

AN5050 Rev 8 53/79

AN5050 OCTOSPI application examples

78

d) Insert the function definitions, called in the main(), in the adequate space (in
green bold below).

/* USER CODE BEGIN 4 */

/* This function Enables writing to the memory: write enable cmd is sent in
single SPI mode */

void WriteEnable(void)

{

OSPI_RegularCmdTypeDef sCommand;

OSPI_AutoPollingTypeDef sConfig;

/* Initialize the Write Enable cmd in single SPI mode */

sCommand.OperationType = HAL_OSPI_OPTYPE_COMMON_CFG;

sCommand.FlashId = HAL_OSPI_FLASH_ID_1;

sCommand.Instruction = WRITE_ENABLE_CMD;

sCommand.InstructionMode = HAL_OSPI_INSTRUCTION_1_LINE;

sCommand.InstructionSize = HAL_OSPI_INSTRUCTION_8_BITS;

sCommand.InstructionDtrMode = HAL_OSPI_INSTRUCTION_DTR_DISABLE;

sCommand.AddressMode = HAL_OSPI_ADDRESS_NONE;

sCommand.AlternateBytesMode = HAL_OSPI_ALTERNATE_BYTES_NONE;

sCommand.DataMode = HAL_OSPI_DATA_NONE;

sCommand.DummyCycles = 0;

sCommand.DQSMode = HAL_OSPI_DQS_DISABLE;

sCommand.SIOOMode = HAL_OSPI_SIOO_INST_EVERY_CMD;

/* Send Write Enable command in single SPI mode */

if (HAL_OSPI_Command(&hospi2, &sCommand, HAL_OSPI_TIMEOUT_DEFAULT_VALUE) !=
HAL_OK)

{

Error_Handler();

}

/* Initialize Automatic-Polling mode to wait until WEL=1 */

sCommand.Instruction = READ_STATUS_REG_CMD;

sCommand.DataMode = HAL_OSPI_DATA_1_LINE;

sCommand.DataDtrMode = HAL_OSPI_DATA_DTR_DISABLE;

sCommand.NbData = 1;

if (HAL_OSPI_Command(&hospi2, &sCommand, HAL_OSPI_TIMEOUT_DEFAULT_VALUE) !=
HAL_OK)

{

Error_Handler();

}

/* Set the mask to 0x02 to mask all Status REG bits except WEL */

/* Set the match to 0x02 to check if the WEL bit is set */

sConfig.Match = WRITE_ENABLE_MATCH_VALUE;

sConfig.Mask = WRITE_ENABLE_MASK_VALUE;

sConfig.MatchMode = HAL_OSPI_MATCH_MODE_AND;

sConfig.Interval = AUTO_POLLING_INTERVAL;

sConfig.AutomaticStop = HAL_OSPI_AUTOMATIC_STOP_ENABLE;

OCTOSPI application examples AN5050

54/79 AN5050 Rev 8

/* Start Automatic-Polling mode to wait until WEL=1 */

if (HAL_OSPI_AutoPolling(&hospi2, &sConfig, HAL_OSPI_TIMEOUT_DEFAULT_VALUE)
!= HAL_OK)

{

Error_Handler();

}

}

/* This functions Enables writing to the memory: write enable cmd is sent in
Octal SPI mode */

void OctalWriteEnable(void)

{

OSPI_RegularCmdTypeDef sCommand;

/* Initialize the Write Enable cmd */

sCommand.OperationType = HAL_OSPI_OPTYPE_COMMON_CFG;

sCommand.FlashId = HAL_OSPI_FLASH_ID_1;

sCommand.Instruction = OCTAL_WRITE_ENABLE_CMD;

sCommand.InstructionMode = HAL_OSPI_INSTRUCTION_8_LINES;

sCommand.InstructionSize = HAL_OSPI_INSTRUCTION_16_BITS;

sCommand.InstructionDtrMode = HAL_OSPI_INSTRUCTION_DTR_ENABLE;

sCommand.AddressMode = HAL_OSPI_ADDRESS_NONE;

sCommand.AlternateBytesMode = HAL_OSPI_ALTERNATE_BYTES_NONE;

sCommand.DataMode = HAL_OSPI_DATA_NONE;

sCommand.DummyCycles = 0;

sCommand.DQSMode = HAL_OSPI_DQS_DISABLE;

sCommand.SIOOMode = HAL_OSPI_SIOO_INST_EVERY_CMD;

/* Send Write Enable command in Octal mode */

if (HAL_OSPI_Command(&hospi2, &sCommand, HAL_OSPI_TIMEOUT_DEFAULT_VALUE) !=
HAL_OK)

{

Error_Handler();

}

}

/* This function Configures Software polling to wait until WEL=1 */

void OctalPollingWEL(void)

{

OSPI_AutoPollingTypeDef sConfig;

OSPI_RegularCmdTypeDef sCommand;

/* Initialize Indirect read mode for Software Polling to wait until WEL=1 */

sCommand.OperationType = HAL_OSPI_OPTYPE_COMMON_CFG;

sCommand.FlashId = HAL_OSPI_FLASH_ID_1;

sCommand.Instruction = OCTAL_READ_STATUS_REG;

sCommand.InstructionMode = HAL_OSPI_INSTRUCTION_8_LINES;

sCommand.InstructionSize = HAL_OSPI_INSTRUCTION_16_BITS;

sCommand.InstructionDtrMode = HAL_OSPI_INSTRUCTION_DTR_ENABLE;

sCommand.Address = 0x0;

sCommand.AddressMode = HAL_OSPI_ADDRESS_8_LINES;

AN5050 Rev 8 55/79

AN5050 OCTOSPI application examples

78

sCommand.AddressSize = HAL_OSPI_ADDRESS_32_BITS;

sCommand.AddressDtrMode = HAL_OSPI_ADDRESS_DTR_ENABLE;

sCommand.AlternateBytesMode = HAL_OSPI_ALTERNATE_BYTES_NONE;

sCommand.DataMode = HAL_OSPI_DATA_8_LINES;

sCommand.DataDtrMode = HAL_OSPI_DATA_DTR_ENABLE;

sCommand.NbData = 2;

sCommand.DummyCycles = DUMMY_CLOCK_CYCLES_READ_REG;

sCommand.DQSMode = HAL_OSPI_DQS_DISABLE;

sCommand.SIOOMode = HAL_OSPI_SIOO_INST_EVERY_CMD;

/* Set the mask to 0x02 to mask all Status REG bits except WEL */

/* Set the match to 0x02 to check if the WEL bit is Set */

sConfig.Match = WRITE_ENABLE_MATCH_VALUE;

sConfig.Mask = WRITE_ENABLE_MASK_VALUE;

sConfig.MatchMode = HAL_OSPI_MATCH_MODE_AND;

sConfig.Interval = 0x10;

sConfig.AutomaticStop = HAL_OSPI_AUTOMATIC_STOP_ENABLE;

if (HAL_OSPI_Command(&hospi2, &sCommand, HAL_OSPI_TIMEOUT_DEFAULT_VALUE) !=
HAL_OK)

{

Error_Handler();

}

/* Start Automatic-Polling mode to wait until the memory is ready WEL=1 */

if (HAL_OSPI_AutoPolling(&hospi2, &sConfig, HAL_OSPI_TIMEOUT_DEFAULT_VALUE)
!= HAL_OK)

{

Error_Handler();

}

}

/* This function Configures Automatic-polling mode to wait until WIP=0 */

void AutoPollingWIP(void)

{

OSPI_RegularCmdTypeDef sCommand;

OSPI_AutoPollingTypeDef sConfig;

/* Initialize Automatic-Polling mode to wait until WIP=0 */

sCommand.OperationType = HAL_OSPI_OPTYPE_COMMON_CFG;

sCommand.FlashId = HAL_OSPI_FLASH_ID_1;

sCommand.Instruction = READ_STATUS_REG_CMD;

sCommand.InstructionMode = HAL_OSPI_INSTRUCTION_1_LINE;

sCommand.InstructionSize = HAL_OSPI_INSTRUCTION_8_BITS;

sCommand.InstructionDtrMode = HAL_OSPI_INSTRUCTION_DTR_DISABLE;

sCommand.AddressMode = HAL_OSPI_ADDRESS_NONE;

sCommand.AlternateBytesMode = HAL_OSPI_ALTERNATE_BYTES_NONE;

sCommand.DummyCycles = 0;

sCommand.DQSMode = HAL_OSPI_DQS_DISABLE;

OCTOSPI application examples AN5050

56/79 AN5050 Rev 8

sCommand.SIOOMode = HAL_OSPI_SIOO_INST_EVERY_CMD;

sCommand.DataMode = HAL_OSPI_DATA_1_LINE;

sCommand.NbData = 1;

sCommand.DataDtrMode = HAL_OSPI_DATA_DTR_DISABLE;

/* Set the mask to 0x01 to mask all Status REG bits except WIP */

/* Set the match to 0x00 to check if the WIP bit is Reset */

sConfig.Match = MEMORY_READY_MATCH_VALUE;

sConfig.Mask = MEMORY_READY_MASK_VALUE;

sConfig.MatchMode = HAL_OSPI_MATCH_MODE_AND;

sConfig.Interval = 0x10;

sConfig.AutomaticStop = HAL_OSPI_AUTOMATIC_STOP_ENABLE;

if (HAL_OSPI_Command(&hospi2, &sCommand, HAL_OSPI_TIMEOUT_DEFAULT_VALUE) !=
HAL_OK)

{

Error_Handler();

}

/* Start Automatic-Polling mode to wait until the memory is ready WIP=0 */

if (HAL_OSPI_AutoPolling(&hospi2, &sConfig, HAL_OSPI_TIMEOUT_DEFAULT_VALUE)
!= HAL_OK)

{

Error_Handler();

}

}

/* This function Configures Software polling mode to wait the memory is
ready WIP=0 */

void OctalPollingWIP(void)

{

OSPI_RegularCmdTypeDef sCommand;

OSPI_AutoPollingTypeDef sConfig;

/* Initialize Automatic-Polling mode to wait until WIP=0 */

sCommand.OperationType = HAL_OSPI_OPTYPE_COMMON_CFG;

sCommand.FlashId = HAL_OSPI_FLASH_ID_1;

sCommand.Instruction = OCTAL_READ_STATUS_REG;

sCommand.InstructionMode = HAL_OSPI_INSTRUCTION_8_LINES;

sCommand.InstructionSize = HAL_OSPI_INSTRUCTION_16_BITS;

sCommand.InstructionDtrMode = HAL_OSPI_INSTRUCTION_DTR_ENABLE;

sCommand.Address = 0x0;

sCommand.AddressMode = HAL_OSPI_ADDRESS_8_LINES;

sCommand.AddressSize = HAL_OSPI_ADDRESS_32_BITS;

sCommand.AddressDtrMode = HAL_OSPI_ADDRESS_DTR_ENABLE;

sCommand.AlternateBytesMode = HAL_OSPI_ALTERNATE_BYTES_NONE;

sCommand.DataMode = HAL_OSPI_DATA_8_LINES;

sCommand.DataDtrMode = HAL_OSPI_DATA_DTR_ENABLE;

sCommand.NbData = 2;

sCommand.DummyCycles = DUMMY_CLOCK_CYCLES_READ_REG;

AN5050 Rev 8 57/79

AN5050 OCTOSPI application examples

78

sCommand.DQSMode = HAL_OSPI_DQS_DISABLE;

sCommand.SIOOMode = HAL_OSPI_SIOO_INST_EVERY_CMD;

/* Set the mask to 0x01 to mask all Status REG bits except WIP */

/* Set the match to 0x00 to check if the WIP bit is Reset */

sConfig.Match = MEMORY_READY_MATCH_VALUE;

sConfig.Mask = MEMORY_READY_MASK_VALUE;

sConfig.MatchMode = HAL_OSPI_MATCH_MODE_AND;

sConfig.Interval = 0x10;

sConfig.AutomaticStop = HAL_OSPI_AUTOMATIC_STOP_ENABLE;

if (HAL_OSPI_Command(&hospi2, &sCommand, HAL_OSPI_TIMEOUT_DEFAULT_VALUE) !=
HAL_OK)

{

Error_Handler();

}

/* Start Automatic-Polling mode to wait until the memory is ready WIP=0 */

if (HAL_OSPI_AutoPolling(&hospi2, &sConfig, HAL_OSPI_TIMEOUT_DEFAULT_VALUE)
!= HAL_OK)

{

Error_Handler();

}

}

/*** This function configures the MX25LM51245G memory ***/

void OctalDTR_MemoryCfg(void)

{

 OSPI_RegularCmdTypeDef sCommand;

uint8_t tmp;

/* Enable writing to memory in order to set Dummy */

WriteEnable();

/* Initialize Indirect write mode to configure Dummy */

sCommand.OperationType = HAL_OSPI_OPTYPE_COMMON_CFG;

sCommand.FlashId = HAL_OSPI_FLASH_ID_1;

sCommand.InstructionMode = HAL_OSPI_INSTRUCTION_1_LINE;

sCommand.InstructionSize = HAL_OSPI_INSTRUCTION_8_BITS;

sCommand.InstructionDtrMode = HAL_OSPI_INSTRUCTION_DTR_DISABLE;

sCommand.Instruction = WRITE_CFG_REG_2_CMD;

sCommand.Address = CONFIG_REG2_ADDR3;

sCommand.AddressMode = HAL_OSPI_ADDRESS_1_LINE;

sCommand.AddressSize = HAL_OSPI_ADDRESS_32_BITS;

sCommand.AddressDtrMode = HAL_OSPI_ADDRESS_DTR_DISABLE;

sCommand.AlternateBytesMode = HAL_OSPI_ALTERNATE_BYTES_NONE;

sCommand.DataMode = HAL_OSPI_DATA_1_LINE;

sCommand.DataDtrMode= HAL_OSPI_DATA_DTR_DISABLE;

sCommand.NbData = 1;

sCommand.DummyCycles = 0;

sCommand.DQSMode = HAL_OSPI_DQS_DISABLE;

OCTOSPI application examples AN5050

58/79 AN5050 Rev 8

sCommand.SIOOMode = HAL_OSPI_SIOO_INST_EVERY_CMD;

if (HAL_OSPI_Command(&hospi2, &sCommand, HAL_OSPI_TIMEOUT_DEFAULT_VALUE) !=
HAL_OK)

{

Error_Handler();

}

/* Write Configuration register 2 with new dummy cycles */

tmp = CR2_DUMMY_CYCLES_66MHZ;

if (HAL_OSPI_Transmit(&hospi2, &tmp, HAL_OSPI_TIMEOUT_DEFAULT_VALUE) !=
HAL_OK)

{

Error_Handler();

}

AutoPollingWIP();

/* Enable writing to memory in order to set Octal DTR mode */

WriteEnable();

/* Initialize OCTOSPI1 to Indirect write mode to configure Octal mode */

sCommand.Instruction = WRITE_CFG_REG_2_CMD;

sCommand.Address = CONFIG_REG2_ADDR1;

sCommand.AddressMode = HAL_OSPI_ADDRESS_1_LINE;

if (HAL_OSPI_Command(&hospi2, &sCommand, HAL_OSPI_TIMEOUT_DEFAULT_VALUE) !=
HAL_OK)

{

Error_Handler();

}

/* Write Configuration register 2 with with Octal mode */

tmp = CR2_DTR_OPI_ENABLE;

if (HAL_OSPI_Transmit(&hospi2, &tmp, HAL_OSPI_TIMEOUT_DEFAULT_VALUE) !=
HAL_OK)

{

Error_Handler();

}

}

/* This function erases the first memory sector */

void OctalSectorErase(void)

{

OSPI_RegularCmdTypeDef sCommand;

/* Initialize Indirect write mode to erase the first sector */

sCommand.OperationType = HAL_OSPI_OPTYPE_COMMON_CFG;

sCommand.FlashId = HAL_OSPI_FLASH_ID_1;

sCommand.Instruction = OCTAL_SECTOR_ERASE_CMD;

sCommand.InstructionMode = HAL_OSPI_INSTRUCTION_8_LINES;

sCommand.InstructionSize = HAL_OSPI_INSTRUCTION_16_BITS;

sCommand.InstructionDtrMode = HAL_OSPI_INSTRUCTION_DTR_ENABLE;

sCommand.AlternateBytesMode = HAL_OSPI_ALTERNATE_BYTES_NONE;

sCommand.DataMode = HAL_OSPI_DATA_NONE;

AN5050 Rev 8 59/79

AN5050 OCTOSPI application examples

78

sCommand.DataDtrMode = HAL_OSPI_DATA_DTR_ENABLE;

sCommand.DummyCycles = 0;

sCommand.DQSMode = HAL_OSPI_DQS_DISABLE;

sCommand.SIOOMode = HAL_OSPI_SIOO_INST_EVERY_CMD;

sCommand.AddressDtrMode = HAL_OSPI_ADDRESS_DTR_ENABLE;

sCommand.AddressMode = HAL_OSPI_ADDRESS_8_LINES;

sCommand.AddressSize = HAL_OSPI_ADDRESS_32_BITS;

sCommand.Address = 0;

/* Send Octal Sector erase cmd */

if (HAL_OSPI_Command(&hospi2, &sCommand, HAL_OSPI_TIMEOUT_DEFAULT_VALUE) !=
HAL_OK)

{

Error_Handler();

}

}

/* This function writes the memory */

void OctalDTR_MemoryWrite(void)

{

OSPI_RegularCmdTypeDef sCommand;

/* Initialize Indirect write mode for memory programming */

sCommand.OperationType = HAL_OSPI_OPTYPE_COMMON_CFG;

sCommand.FlashId = HAL_OSPI_FLASH_ID_1;

sCommand.Instruction = OCTAL_PAGE_PROG_CMD;

sCommand.InstructionMode = HAL_OSPI_INSTRUCTION_8_LINES;

sCommand.InstructionSize = HAL_OSPI_INSTRUCTION_16_BITS;

sCommand.AddressMode = HAL_OSPI_ADDRESS_8_LINES;

sCommand.AddressSize = HAL_OSPI_ADDRESS_32_BITS;

sCommand.Address = 0x00000000;

sCommand.AlternateBytesMode = HAL_OSPI_ALTERNATE_BYTES_NONE;

sCommand.DataMode = HAL_OSPI_DATA_8_LINES;

sCommand.NbData = BUFFERSIZE;

sCommand.DummyCycles = 0;

sCommand.SIOOMode = HAL_OSPI_SIOO_INST_EVERY_CMD;

sCommand.InstructionDtrMode = HAL_OSPI_INSTRUCTION_DTR_ENABLE;

sCommand.AddressDtrMode = HAL_OSPI_ADDRESS_DTR_ENABLE;

sCommand.DataDtrMode = HAL_OSPI_DATA_DTR_ENABLE;

sCommand.DQSMode = HAL_OSPI_DQS_ENABLE;

if (HAL_OSPI_Command(&hospi2, &sCommand, HAL_OSPI_TIMEOUT_DEFAULT_VALUE) !=
HAL_OK)

{

Error_Handler();

}

/* Memory Page programming */

if (HAL_OSPI_Transmit(&hospi2, aTxBuffer, HAL_OSPI_TIMEOUT_DEFAULT_VALUE)!=
HAL_OK)

{

OCTOSPI application examples AN5050

60/79 AN5050 Rev 8

Error_Handler();

}

}

/* This function enables memory-mapped mode for Read and Write */

void EnableMemMapped(void)

{ OSPI_RegularCmdTypeDef sCommand;

OSPI_MemoryMappedTypeDef sMemMappedCfg;

/* Initialize memory-mapped mode for read operations */

sCommand.OperationType = HAL_OSPI_OPTYPE_READ_CFG;

sCommand.FlashId = HAL_OSPI_FLASH_ID_1;

sCommand.InstructionMode = HAL_OSPI_INSTRUCTION_8_LINES;

sCommand.InstructionSize = HAL_OSPI_INSTRUCTION_16_BITS;

sCommand.AddressMode = HAL_OSPI_ADDRESS_8_LINES;

sCommand.AddressSize = HAL_OSPI_ADDRESS_32_BITS;

sCommand.AlternateBytesMode = HAL_OSPI_ALTERNATE_BYTES_NONE;

sCommand.DataMode = HAL_OSPI_DATA_8_LINES;

sCommand.DummyCycles = DUMMY_CLOCK_CYCLES_READ;

sCommand.SIOOMode = HAL_OSPI_SIOO_INST_EVERY_CMD;

sCommand.Instruction = OCTAL_IO_DTR_READ_CMD;

sCommand.InstructionDtrMode = HAL_OSPI_INSTRUCTION_DTR_ENABLE;

sCommand.AddressDtrMode = HAL_OSPI_ADDRESS_DTR_ENABLE;

sCommand.DataDtrMode = HAL_OSPI_DATA_DTR_ENABLE;

sCommand.DQSMode = HAL_OSPI_DQS_ENABLE;

if (HAL_OSPI_Command(&hospi2, &sCommand, HAL_OSPI_TIMEOUT_DEFAULT_VALUE) !=
HAL_OK)

{

Error_Handler();

}

/* Initialize memory-mapped mode for write operations */

sCommand.OperationType = HAL_OSPI_OPTYPE_WRITE_CFG;

sCommand.Instruction = OCTAL_PAGE_PROG_CMD;

sCommand.DummyCycles = 0;

if (HAL_OSPI_Command(&hospi2, &sCommand, HAL_OSPI_TIMEOUT_DEFAULT_VALUE) !=
HAL_OK)

{

Error_Handler();

}

/* Configure the memory mapped mode with TimeoutCounter Disabled*/

sMemMappedCfg.TimeOutActivation = HAL_OSPI_TIMEOUT_COUNTER_DISABLE;

if (HAL_OSPI_MemoryMapped(&hospi2, &sMemMappedCfg) != HAL_OK)

{

Error_Handler();

}

}

/* USER CODE END 4 */

AN5050 Rev 8 61/79

AN5050 OCTOSPI application examples

78

• Adding defines to the main.h file

Update the main.h file by inserting the defines in the adequate space (in green bold below).

/* USER CODE BEGIN Private defines */

/* MX25LM512ABA1G12 Macronix memory */

/* Flash commands */

#define OCTAL_IO_DTR_READ_CMD 0xEE11

#define OCTAL_IO_READ_CMD 0xEC13

#define OCTAL_PAGE_PROG_CMD 0x12ED

#define OCTAL_READ_STATUS_REG_CMD 0x05FA

#define OCTAL_SECTOR_ERASE_CMD 0x21DE

#define OCTAL_WRITE_ENABLE_CMD 0x06F9

#define READ_STATUS_REG_CMD 0x05

#define WRITE_CFG_REG_2_CMD 0x72

#define WRITE_ENABLE_CMD 0x06

/* Dummy clocks cycles */

#define DUMMY_CLOCK_CYCLES_READ 6

#define DUMMY_CLOCK_CYCLES_READ_REG 4

/* Auto-polling values */

#define WRITE_ENABLE_MATCH_VALUE 0x02

#define WRITE_ENABLE_MASK_VALUE 0x02

#define MEMORY_READY_MATCH_VALUE 0x00

#define MEMORY_READY_MASK_VALUE 0x01

#define AUTO_POLLING_INTERVAL 0x10

/* Memory registers address */

#define CONFIG_REG2_ADDR1 0x0000000

#define CR2_STR_OPI_ENABLE 0x01

#define CR2_DTR_OPI_ENABLE 0x02

#define CONFIG_REG2_ADDR3 0x00000300

#define CR2_DUMMY_CYCLES_66MHZ 0x07

/* Exported macro --*/

#define COUNTOF(__BUFFER__) (sizeof(__BUFFER__)/sizeof(*(__BUFFER__)))

/* Size of buffers */

#define BUFFERSIZE (COUNTOF(aTxBuffer) - 1)

/* USER CODE END Private defines */

• Code is now ready, built and run.

OCTOSPI application examples AN5050

62/79 AN5050 Rev 8

III. Quad-SPI PSRAM in Regular-command protocol example

In order to configure the OCTOSPI1 in Indirect/Memory-mapped mode and to configure the
external Quad-SPI PSRAM AP Memory allowing communication in STR Quad-SPI mode,
some functions must be added to the project. Code can be added to the main.c file (see
code below) or defines can be added to the main.h file (see Adding defines to the main.h
file).

• Adding code to the main.c file

Open the already generated project and follow the steps described below:

Note: Update the main.c file by inserting the lines of code to include the needed functions in the
adequate space indicated in green bold below. This task avoids loosing the user code in
case of project regeneration.

a) Insert variables declarations in the adequate space (in green bold below).

/* USER CODE BEGIN PV */

/*buffer that we will write n times to the external memory , user can modify
the content to write his desired data */

uint8_t aTxBuffer[] = " **OCTOSPI/Quad-spi PSRAM Memory-mapped
communication example** **OCTOSPI/Quad-spi PSRAM Memory-mapped
communication example** **OCTOSPI/Quad-spi PSRAM Memory-mapped
communication example** **OCTOSPI/Quad-spi PSRAM Memory-mapped
communication example** ";

/* USER CODE END PV */

b) Insert the functions prototypes in the adequate space (in green bold below).

/* USER CODE BEGIN PFP */

void EnterQuadMode(void);

void EnableMemMappedQuadMode(void);

/* USER CODE END PFP */

c) Insert the functions to be called in the main() function, in the adequate space (in
green bold below).

/* USER CODE BEGIN 1 */

__IO uint8_t *mem_addr;

uint32_t address = 0;

uint16_t index1; /*index1 counter of bytes used when reading/writing 256
bytes buffer */

uint16_t index2; /*index2 counter of 256 bytes buffer used when
reading/writing the 1Mbytes extended buffer */

/* USER CODE END 1 */

AN5050 Rev 8 63/79

AN5050 OCTOSPI application examples

78

/* USER CODE BEGIN 2 */

/* Enter Quad Mode 4-4-4 --- */

EnterQuadMode();

/* Enable Memory mapped in Quad mode -------------------------------- */

EnableMemMappedQuadMode();

/* Writing Sequence of 1Mbyte --------------------------------------- */

mem_addr = (__IO uint8_t *)(OCTOSPI1_BASE + address);

for (index2 = 0; index2 < EXTENDEDBUFFERSIZE/BUFFERSIZE; index2++)

/*Writing 1Mbyte (256Byte BUFFERSIZE x 4096 times) */

{

for (index1 = 0; index1 < BUFFERSIZE; index1++)

{

*mem_addr = aTxBuffer[index1];

mem_addr++;

}

}

/* Reading Sequence of 1Mbyte -- */

mem_addr = (__IO uint8_t *)(OCTOSPI1_BASE + address);

for (index2 = 0; index2 < EXTENDEDBUFFERSIZE/BUFFERSIZE; index2++)

/*Reading 1Mbyte (256Byte BUFFERSIZE x 4096 times)*/

{

for (index1 = 0; index1 < BUFFERSIZE; index1++)

{

if (*mem_addr != aTxBuffer[index1])

{

/*can toggle led here*/

}

mem_addr++;

}

}

/*can toggle led here*/

/* USER CODE END 2 */

OCTOSPI application examples AN5050

64/79 AN5050 Rev 8

d) Insert the function definitions, called in the main(), in the adequate space (in
green bold below).

/* USER CODE BEGIN 4 */

/*Function to Enable Memory mapped mode in Quad mode 4-4-4*/

void EnableMemMappedQuadMode(void)

{

OSPI_RegularCmdTypeDef sCommand;

OSPI_MemoryMappedTypeDef sMemMappedCfg;

sCommand.FlashId = HAL_OSPI_FLASH_ID_1;

sCommand.InstructionMode = HAL_OSPI_INSTRUCTION_4_LINES;

sCommand.InstructionSize = HAL_OSPI_INSTRUCTION_8_BITS;

sCommand.InstructionDtrMode = HAL_OSPI_INSTRUCTION_DTR_DISABLE;

sCommand.AddressMode = HAL_OSPI_ADDRESS_4_LINES;

sCommand.AddressSize = HAL_OSPI_ADDRESS_24_BITS;

sCommand.AddressDtrMode = HAL_OSPI_ADDRESS_DTR_DISABLE;

sCommand.AlternateBytesMode = HAL_OSPI_ALTERNATE_BYTES_NONE;

sCommand.DataMode = HAL_OSPI_DATA_4_LINES;

sCommand.DataDtrMode = HAL_OSPI_DATA_DTR_DISABLE;

sCommand.SIOOMode = HAL_OSPI_SIOO_INST_EVERY_CMD;

sCommand.Address = 0;

sCommand.NbData = 1;

/* Memory-mapped mode configuration for Quad Read mode 4-4-4*/

sCommand.OperationType = HAL_OSPI_OPTYPE_READ_CFG;

sCommand.Instruction = FAST_READ_QUAD;

sCommand.DummyCycles = FAST_READ_QUAD_DUMMY_CYCLES;

if (HAL_OSPI_Command(&hospi1, &sCommand, HAL_OSPI_TIMEOUT_DEFAULT_VALUE) !=
HAL_OK)

{

Error_Handler();

}

/* Memory-mapped mode configuration for Quad Write mode 4-4-4*/

sCommand.OperationType = HAL_OSPI_OPTYPE_WRITE_CFG;

sCommand.Instruction = QUAD_WRITE;

sCommand.DummyCycles = WRITE_QUAD_DUMMY_CYCLES;

sCommand.DQSMode = HAL_OSPI_DQS_ENABLE;

if (HAL_OSPI_Command(&hospi1, &sCommand, HAL_OSPI_TIMEOUT_DEFAULT_VALUE) !=
HAL_OK)

{

Error_Handler();

}

/*Disable timeout counter for memory mapped mode*/

sMemMappedCfg.TimeOutActivation = HAL_OSPI_TIMEOUT_COUNTER_DISABLE;

/*Enable memory mapped mode*/

AN5050 Rev 8 65/79

AN5050 OCTOSPI application examples

78

if (HAL_OSPI_MemoryMapped(&hospi1, &sMemMappedCfg) != HAL_OK)

{

Error_Handler();

}

}

/*Function to configure the external memory in Quad mode 4-4-4*/

void EnterQuadMode(void)

{

OSPI_RegularCmdTypeDef sCommand;

sCommand.OperationType = HAL_OSPI_OPTYPE_COMMON_CFG;

sCommand.FlashId = HAL_OSPI_FLASH_ID_1;

sCommand.Instruction = ENTER_QUAD_MODE;

sCommand.InstructionMode = HAL_OSPI_INSTRUCTION_1_LINE;

sCommand.InstructionSize = HAL_OSPI_INSTRUCTION_8_BITS;

sCommand.InstructionDtrMode = HAL_OSPI_INSTRUCTION_DTR_DISABLE;

sCommand.AddressMode = HAL_OSPI_ADDRESS_NONE;

sCommand.AlternateBytesMode = HAL_OSPI_ALTERNATE_BYTES_NONE;

sCommand.DataMode = HAL_OSPI_DATA_NONE;

sCommand.DummyCycles = ENTER_QUAD_DUMMY_CYCLES;

sCommand.DQSMode = HAL_OSPI_DQS_DISABLE;

sCommand.SIOOMode = HAL_OSPI_SIOO_INST_EVERY_CMD;

/*Enter QUAD mode*/

if (HAL_OSPI_Command(&hospi1, &sCommand, HAL_OSPI_TIMEOUT_DEFAULT_VALUE) !=
HAL_OK)

{

Error_Handler();

}

}

/* USER CODE END 4 */

OCTOSPI application examples AN5050

66/79 AN5050 Rev 8

• Adding defines to the main.h file

Update the main.h file by inserting the defines in the adequate space (in green bold below).

/* USER CODE BEGIN Private defines */

/*APS1604M-3SQR PSRAM APmemory*/

#define FAST_READ_QUAD 0xEB

#define QUAD_WRITE 0x38

#define FAST_READ_QUAD_DUMMY_CYCLES 6

#define WRITE_QUAD_DUMMY_CYCLES 0

#define ENTER_QUAD_DUMMY_CYCLES 0

#define QUAD_WRITE 0x38

#define ENTER_QUAD_MODE 0x35

#define EXIT_QUAD_MODE 0xF5

/* Exported macro ---*/

#define BUFFERSIZE (COUNTOF(aTxBuffer) - 1)

#define COUNTOF(__BUFFER__) (sizeof(__BUFFER__) /
sizeof(*(__BUFFER__)))

#define EXTENDEDBUFFERSIZE (1048576)

/* USER CODE END Private defines */

• Code is now ready, built and run.

AN5050 Rev 8 67/79

AN5050 OCTOSPI application examples

78

IV. HyperFlash and HyperRAM memories with Multiplexed mode example

The following example shows how to read data from the external HyperFlash using DMA1,
while the CPU reads data from the HyperRAM.

The DMA1 must be configured using the STM32CubeMX, with the following steps under
system core:

• Select DMA.

• Under MemToMem, select Add.

• Configure the DMA request and the DMA request settings like the figure below.

Figure 26. STM32CubeMX - DMA1 configuration

In order to configure the OCTOSPI1 and OCTOSPI2 in Memory-mapped mode and to read
data from the two external HyperBus memories, some functions must be added to the
project. Code can be added to the main.c file (see code below) or defines can be added to
the main.h file (see Adding defines to the main.h file).

• Adding code to the main.c file

Open the already generated project and follow the steps described below:

Note: Update the main.c file by inserting the lines of code to include the needed functions in the
adequate space indicated in green bold below. This task avoids loosing the user code in
case of project regeneration.

a) Insert variables declarations in the adequate space (in green bold below).

/* USER CODE BEGIN PV */

/*define a 64Kbyte buffer for HyperRam data read with CPU*/

#pragma location = 0x20020000

uint32_t RxHyperRAM[BUFFERSIZE];

/* USER CODE END PV */

MSv65673V1Note: Pink color highlight key items.

OCTOSPI application examples AN5050

68/79 AN5050 Rev 8

b) Insert the functions prototypes in the adequate space (in green bold below).

/* USER CODE BEGIN PFP */

void EnableMemMapped(void);

void DelayBlock_Calibration(void);

/* USER CODE END PFP */

c) Insert the functions to be called in the main() function, in the adequate space (in
green bold below).

/* USER CODE BEGIN 1 */

/*pointer on OCTOSPI1 memory mapped address region*/

__IO uint32_t *OCTOSPI1_MEMMAPPED_ADD = (__IO uint32_t *)(OCTOSPI1_BASE);

/* USER CODE END 1 */

/* USER CODE BEGIN 2 */

/*Configure the MAXTRAN feature for 241 clock cycles for OCTOSPI1 and
OCTOSPI2 (4µs of max transaction period)*/

MAXTRAN_Configuration();

/*Configure and Enable the Memory Mapped mode for both OCTOSPI1 and OCTOSPI2
respectively at address 0x90000000 and 0x70000000*/

EnableMemMapped();

/*Delay block Calibration*/

DelayBlock_Calibration();

/*Start Data read (64Kbyte) with DMA1 from the HyperFlash (0x70000000) to
the internal SRAM3 (0x20030000)*/

if(HAL_DMA_Start(&hdma_memtomem_dma1_channel1,OCTOSPI2_BASE, SRAM3_BASE,
BUFFERSIZE) != HAL_OK)

{

Error_Handler();

}

/*Start Data read (64Kbyte) with CPU from the HyperRAM (0x90000000) to

the internal SRAM2 (0x20020000) while the DMA is reading from HyperFLASH*/

for (index = 0; index < BUFFERSIZE; index++)

{

RxHyperRAM[index] = *OCTOSPI1_MEMMAPPED_ADD++;

}

/* USER CODE END 2 */

AN5050 Rev 8 69/79

AN5050 OCTOSPI application examples

78

d) Insert the function definitions, called in the main(), in the adequate space (in
green bold below).

/* USER CODE BEGIN 4 */

/* Memory-mapped mode configuration for OCTOSPI1 and OCTOSPI2--------- */

void EnableMemMapped(void)

{

OSPI_HyperbusCmdTypeDef sCommand;

OSPI_MemoryMappedTypeDef sMemMappedCfg;

/* Memory-mapped mode configuration ---------------------------------- */

sCommand.AddressSpace = HAL_OSPI_MEMORY_ADDRESS_SPACE;

sCommand.AddressSize = HAL_OSPI_ADDRESS_32_BITS;

sCommand.DQSMode = HAL_OSPI_DQS_ENABLE;

sCommand.Address = 0;

sCommand.NbData = 1;

if (HAL_OSPI_HyperbusCmd(&hospi1, &sCommand,
HAL_OSPI_TIMEOUT_DEFAULT_VALUE) != HAL_OK)

{

Error_Handler();

}

if (HAL_OSPI_HyperbusCmd(&hospi2, &sCommand,
HAL_OSPI_TIMEOUT_DEFAULT_VALUE) != HAL_OK)

{

Error_Handler();

}

sMemMappedCfg.TimeOutActivation = HAL_OSPI_TIMEOUT_COUNTER_ENABLE;

sMemMappedCfg.TimeOutPeriod = 0x1;

if (HAL_OSPI_MemoryMapped(&hospi1, &sMemMappedCfg) != HAL_OK)

{

Error_Handler();

}

sMemMappedCfg.TimeOutActivation = HAL_OSPI_TIMEOUT_COUNTER_ENABLE;

sMemMappedCfg.TimeOutPeriod = 0x1;

if (HAL_OSPI_MemoryMapped(&hospi2, &sMemMappedCfg) != HAL_OK)

{

Error_Handler();

}

}

/*This function is used to calibrate the Delayblock before initiating
USER's application read/write transactions*/

void DelayBlock_Calibration(void)

OCTOSPI application examples AN5050

70/79 AN5050 Rev 8

{

/*buffer used for calibration*/

uint8_t Cal_buffer[] = " ****Delay Block Calibration Buffer**** ****Delay
Block Calibration Buffer**** ****Delay Block Calibration Buffer****
****Delay Block Calibration Buffer**** ****Delay Block Calibration
Buffer**** ****Delay Block Calibration Buffer**** ";

uint16_t index;

__IO uint8_t *mem_addr;

uint8_t test_failed;

uint8_t delay = 0x0;

uint8_t Min_found = 0;

uint8_t Max_found = 0;

uint8_t Min_Window = 0x0;

uint8_t Max_Window = 0xF;

uint8_t Mid_window = 0;

uint8_t calibration_ongoing = 1;

/* Write the Cal_buffer to the memory*/

mem_addr = (__IO uint8_t *)(OCTOSPI1_BASE);

for (index = 0; index < DLYB_BUFFERSIZE; index++)

{

*mem_addr = Cal_buffer[index];

mem_addr++;

}

while (calibration_ongoing)

{

/* update the Delayblock calibration */

HAL_RCCEx_OCTOSPIDelayConfig(delay, 0);

test_failed = 0;

mem_addr = (__IO uint8_t *)(OCTOSPI1_BASE);

for (index = 0; index < DLYB_BUFFERSIZE; index++)

{

/* Read the Cal_buffer from the memory*/

if (*mem_addr != Cal_buffer[index])

{

/*incorrect data read*/

test_failed = 1;

}

mem_addr++;

}

/* search for the Min window */

AN5050 Rev 8 71/79

AN5050 OCTOSPI application examples

78

if (Min_found!=1)

{

if (test_failed == 1)

{

if (delay < 15)

{

delay++;

}

else

{

/* If delay set to maximum and error still detected: can't use external
Memory*/

Error_Handler();

}

}

else

{

Min_Window = delay;

Min_found=1;

delay = 0xF;

}

}

/* search for the Max window */

else if (Max_found!=1)

{

if (test_failed == 1)

{

if (delay > 0)

{

delay--;

}

else

{

/* If delay set to minimum and error still detected: can't use external
Memory */

Error_Handler();

}

}

else

{

OCTOSPI application examples AN5050

72/79 AN5050 Rev 8

Max_Window = delay;

Max_found=1;

}

}

/* min and max delay window found , configure the delay block with the
middle window value and exit calibration */

else

{

Mid_window = (Max_Window+Min_Window)/2;

HAL_RCCEx_OCTOSPIDelayConfig(Mid_window, 0);

/* Exit calibration */

calibration_ongoing = 0;

}

}

}

/* MAXTRAN configuration function for OCTOSPI1 and OCTOSPI2 */

void MAXTRAN_Configuration(void)

{

/*Maximum transaction configured for 4us*/

MODIFY_REG(hospi1.Instance->DCR3, OCTOSPI_DCR3_MAXTRAN, 0x000000F1);

MODIFY_REG(hospi2.Instance->DCR3, OCTOSPI_DCR3_MAXTRAN, 0x000000F1);

}

/* USER CODE END 4 */

• Adding defines to the main.h file

Update the main.h file by inserting the defines in the adequate space (in green bold below).

/* USER CODE BEGIN Private defines */

#define BUFFERSIZE 0x4000

#define DLYB_BUFFERSIZE (COUNTOF(Cal_buffer) - 1)

#define COUNTOF(__BUFFER__) (sizeof(__BUFFER__) /
sizeof(*(__BUFFER__)))

/* USER CODE END Private defines */

• Code is now ready, built and run.

AN5050 Rev 8 73/79

AN5050 Performance and power

78

7 Performance and power

This section explains how to get the best performances and how to decrease the application
power consumption.

7.1 How to get the best read performance

There are three main recommendations to be followed in order to get the optimum reading
performances:

• Configure OCTOSPI/HSPI at its maximum speed.

• Use Octo-SPI and Hexadeca-SPI DTR mode for Regular command protocol.

• Reduce command overhead:

Each new read operation needs a command/address to be sent plus a latency period
that leads to command overhead. In order to reduce command overhead and boost the
read performance, the user must focus on the following points:

– Use large burst transfers

Since each access to the external memory issues command/address, it is
beneficial to perform large burst transfers rather than small repetitive transfers.
This action reduces command overhead.

– Sequential access

The best read performance is achieved if the stored data is read out sequentially,
which avoids command and address overhead and then leads to reach the
maximum performances at the operating OCTOSPI/HSPI clock speed.

– Consider timeout counter

The user must consider that enabling timeout counter in Memory-mapped mode
may increase the command overhead and then decrease the read performance.
When timeout occurs, the OCTOSPI/HSPI rises chip-select. After that, to read
again from the external memory, a new read sequence needs to be initiated. It
means that the read command must be issued again, which leads to command
overhead.
Note that timeout counter allows decreasing power consumption, but if the
performance is a concern, the user can increase the timeout period in the
OCTOSPI_LPTR/HSPI_LPTR register or even disable it.

7.2 Decreasing power consumption

One of the most important requirements in wearable and mobile applications is the power
efficiency. Power consumption can be decreased by following the recommendations
presented in this section.

To decrease the total application power-consumption, the STM32 is usually put in low-power
mode. To reduce even more the current consumption, the connected memory can also be
put in low-power mode.

Performance and power AN5050

74/79 AN5050 Rev 8

7.2.1 STM32 low-power modes

The STM32 low-power states are important requirements that must be considered as they
have a direct effect on the overall application power consumption and on the Octo-SPI and
Hexadeca-SPI interface state.

For more informations about STM32 low-power modes configuration, refer to the product
reference manual.

7.2.2 Decreasing Octo-SPI and Hexadeca-SPI memory power consumption

In order to save more energy when the application is in low-power mode, it is recommended
to put the memory in low-power mode before entering the STM32 in low-power mode.

Timeout counter usage

The timeout counter feature can be used to avoid any extra power-consumption in the
external memory. This feature can be used only in Memory-mapped mode. When the clock
is stopped for a long time and after a period of timeout elapsed without any access, the
timeout counter releases the NCS pin to put the external memory in a lower-consumption
state (so called Standby mode).

Put the memory in deep power-down mode

For most octal memory devices, the default mode after the power-up sequence, is the
Standby low-power mode. In Standby mode, there is no ongoing operation. The NCS is high
and the current consumption is relatively less than in operating mode.

To save more energy, some memory manufacturers provide another low-power mode
commonly known DPD (deep power-down mode). This is different from Standby mode.
During the DPD, the device is not active and most commands (such as write, program or
read) are ignored.

The application can put the memory device in DPD mode before entering the STM32 in
low-power mode, when the memory is not used. This action allows a reduction of the overall
application power-consumption and a longer wakeup time.

Entering and exiting DPD mode

To enter DPD mode, a DPD command sequence must be issued to the external memory.
Each memory manufacturer has its dedicated DPD command sequence.

To exit DPD mode, some memory devices require an RDP (release from deep power-down)
command to be issued. For some other memory devices, a hardware reset leads to exit
DPD mode.

Note: Refer to the relevant memory device datasheet for more details.

AN5050 Rev 8 75/79

AN5050 Supported devices

78

8 Supported devices

The Octo-SPI and Hexadeca-SPI interface can operate in two different low-level protocols:
Regular-command and HyperBus.

Thanks to the Regular-command frame format flexibility, any Single-SPI, Dual-SPI,
Quad-SPI or Octo-SPI or 16-bit memory can be connected to an STM32 device. There are
several suppliers of Octo-SPI or 16-bit compatible memories (such as Macronix, Adesto,
Micron, AP Memory, Cypress, or Winbond).

Thanks to the HyperBus protocol support, several HyperRAM and HyperFlash memories
are supported by the STM32 devices. Some memory manufacturers (such as Cypress,
Winbond, or ISSI) provide HyperRAM and HyperFlash memories.

As already described in Section 6.2, the Macronix MX25LM51245GXDI0A Octo-SPI flash
memory is embedded on the STM32L4R9I-EVAL and STM32L552E-EVAL boards, and on
the STM32L4R9I-DISCO Discovery kit.

9 Conclusion

Some STM32 MCUs provide a very flexible Octo-SPI and Hexadeca-SPI interface that fits
memory hungry applications at a lower cost, and avoids the complexity of designing with
external parallel memories by reducing pin count and offering better performances.

This application note demonstrates the excellent Octo-SPI and Hexadeca-SPI interface
variety of features and flexibility on the STM32L4+ series, STM32L5 series,
STM32H7A3/B3/B0, STM32H72x/73x, STM32H5 series, and STM32U5 series. The STM32
OCTOSPI and HSPI peripheral allows lower development costs and faster time to market.

Revision history AN5050

76/79 AN5050 Rev 8

10 Revision history

Table 8. Document revision history

Date Revision Changes

20-Oct-2017 1 Initial release.

27-Apr-2018 2

Updated

– Section 1: Overview of the OCTOSPI interface in the STM32 MCUs system
architecture

– Section 4.2.2: Use case description

– Section 4.2.3: OCTOSPI GPIOs and clocks configuration

– Section 5.2: Decreasing power consumption and all its subsections

– Section : STM32CubeMX: project generation on page 35

– Section : STM32CubeMX: OCTOSPI2 peripheral configuration in HyperBus™ mode
on page 46

– Section : STM32CubeMX: project generation on page 47

– Figure 10: Examples configuration: OCTOSPI1 set to regular-command mode and
OCTOSPI2 set to HyperBus™

– Figure 25: OCTOSPI2 peripheral configuration in HyperBus™ mode

– Table 2: OCTOSPI availability and features across STM32 families

– Added:

– Section 5: Performance and power

– Section 5.1: How to get the best read performance

– Section 5.1.1: Read performance

– Section 6: Supported devices

11-Oct-2019 3

Updated:

– Doc title and Introduction

– Section 1.1: OCTOSPI main features

– Figure 1: STM32L4+ Series system architecture

– Section 2.3.3: Memory-mapped mode

Added STM32L5 series:

– Section 1.2.2: STM32L5 Series system architecture

– Section 3.1.1: Connecting two octal memories to one Octo-SPI interface

– Section 5.2.1: STM32 low-power modes

– Conclusion

Removed Section 5.1.1: Read performance

AN5050 Rev 8 77/79

AN5050 Revision history

78

19-Dec-2019 4

Updated:

– Introduction and Table 1: Applicable products

– Section 1: Overview of the OCTOSPI in STM32 MCUs

– Table 2: OCTOSPI main features

– Section 1.2: OCTOSPI in a smart architecture

– Figure 1: STM32L4+ Series system architecture

– Figure 2: STM32L5 Series system architecture

– Section 2.1.2: OCTOSPI I/O manager

– Section 2.1.3: OCTOSPI delay block

– Section 2.3.3: Memory-mapped mode

– Section 3.1.1: GPIOs and OCTOSPI I/Os configuration

– Section 3.2: OCTOSPI configuration for regular-command protocol

– Section 3.3: OCTOSPI configuration for HyperBus protocol

– Section 4: OCTOSPI application examples

– Section 6: Supported devices

– Section 7: Conclusion

Added:

– Section 1.2.3: STM32H7A3/B3 system architecture

– Figure 5: OCTOSPI multiplexed mode use case example

Removed:

– Section Connecting two octal memories to one Octo-SPI interface

– Section 4.2.5 HyperBus protocol

27-Apr-2020 5

Updated:

– Table 2: OCTOSPI main features

– Section 1.2.1: STM32L4+ Series system architecture

– Figure 1,Figure 2 and Figure 3

– Structure of Section 2: Octo-SPI interface description

– Section 2.1: OCTOSPI hardware interface

– Section 2.1.2: OCTOSPI delay block

– Section 4.1.1: GPIOs and OCTOSPI I/Os configuration

– Section 4.2: OCTOSPI configuration for regular-command protocol

– Section 5: OCTOSPI application examples introduction

– Section 5.1.1: Using OCTOSPI in a graphical application

– Figure 13: Executing code from memory connected to OCTOSPI2

– STM32CubeMX: Project generation

28-Aug-2020 6

Updated:

– SMT32H72x/3x in Table 1: Applicable products and in the whole document

– Table 2: OCTOSPI main features

– STM32H7B0 in Section 1.2.3: STM32H7A3/7B3/7B0 system architecture

– new Section 1.2.4: STM32H72x/73x system architecture

– Section 6.2.1: STM32 low-power modes

Table 8. Document revision history (continued)

Date Revision Changes

Revision history AN5050

78/79 AN5050 Rev 8

27-Sep-2021 7

Updated: STM32U575/585 line added in

– Table 1: Applicable products

– Table 2: OCTOSPI and HSPI main features

– Section 3.1.2: OCTOSPI delay block

– Section 3.3.3: Memory-mapped mode

– Section 4: OCTOSPI I/O manager

– Section 9: Conclusion

Added:

– Section 2.2.5: STM32U5 series system architecture

01-Mar-2023 8

Updated:

– OCTOSPI updated to OCTOSPI/HSPI

– Table 1: Applicable products

– Table 2: OCTOSPI main features

– Section 2.2: OCTOSPI and HSPI in a smart architecture

– Section 2.2.5: STM32U5 series system architecture

– Figure 5: STM32U5 system architecture

– Section 3: Octo/Hexadeca-SPI interface description

– Section 5.1.1: GPIOs and OCTOSPI/HSPI I/Os configuration

– Section 8: Supported devices

Added:

– STM32U5 series, STM32H562/563/573 line

– Table 3: HSPI main features

– Table 4: Instances on STM32U5 series devices

– Section 2.2.6: STM32H5 system architecture

– Figure 6: STM32H562/563 and H573 system architecture

– Section 3.1.2: HSPI pins and signal interface

Table 8. Document revision history (continued)

Date Revision Changes

AN5050 Rev 8 79/79

AN5050

79

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved

	Table 1. Applicable products
	1 General information
	2 Overview of the OCTOSPI and HSPI in STM32 MCUs
	2.1 OCTOSPI and HSPI main features
	Table 2. OCTOSPI main features
	Table 3. HSPI main features

	2.2 OCTOSPI and HSPI in a smart architecture
	2.2.1 STM32L4+ series system architecture
	Figure 1. STM32L4+ series system architecture

	2.2.2 STM32L5 series system architecture
	Figure 2. STM32L5 series system architecture

	2.2.3 STM32H7A3/7B3/7B0 system architecture
	Figure 3. STM32H7A3/7B3/7B0 system architecture

	2.2.4 STM32H72x/73x system architecture
	Figure 4. STM32H72x/73x system architecture

	2.2.5 STM32U5 series system architecture
	Table 4. Instances on STM32U5 series devices
	Figure 5. STM32U5 system architecture

	2.2.6 STM32H5 system architecture
	Figure 6. STM32H562/563 and H573 system architecture

	3 Octo/Hexadeca-SPI interface description
	3.1 OCTOSPI and HSPI hardware interfaces
	3.1.1 OCTOSPI pins and signal interface
	3.1.2 HSPI pins and signal interface
	3.1.3 OCTOSPI delay block
	Figure 7. OCTOSPI delay block

	3.2 Two low-level protocols
	3.2.1 Regular-command protocol
	Flexible-frame format and hardware interface
	Data strobe (DQS) usage
	Figure 8. Regular-command protocol: octal DTR read operation example in Macronix mode

	3.2.2 HyperBus protocol
	Figure 9. HyperBus protocol: example of reading operation from HyperRAM

	3.3 Three operating modes
	3.3.1 Indirect mode
	3.3.2 Automatic status-polling mode
	3.3.3 Memory-mapped mode
	Starting memory-mapped read or write operation
	Execute in place (XIP)
	Send instruction only once (SIOO)

	4 OCTOSPI I/O manager
	Figure 10. Example of connecting an Octo-SPI flash memory and an HyperRAM memory to an STM32 device
	OCTOSPI I/O manager Multiplexed mode
	Figure 11. OCTOSPI I/O manager Multiplexed mode

	5 OCTOSPI and HSPI configuration
	5.1 OCTOSPI and HSPI common configuration
	5.1.1 GPIOs and OCTOSPI/HSPI I/Os configuration
	Octo-SPI mode when one memory is connected
	HSPI mode with single 16-bit configuration
	Octo-SPI mode when two external octal memories are connected
	Figure 12. Connecting two memories to an Octo-SPI interface

	GPIOs configuration using STM32CubeMX
	OCTOSPI I/O manager configuration
	Figure 13. OCTOSPI I/O manager configuration

	5.1.2 Interrupts and clocks configuration
	Enabling interrupts
	Clock configuration
	Figure 14. OCTOSPI1 and OCTOSPI2 clock scheme

	5.2 OCTOSPI/HSPI configuration for Regular-command protocol
	5.3 OCTOSPI/HSPI configuration for HyperBus protocol
	5.4 Memory configuration
	5.4.1 Memory device configuration
	5.4.2 HyperBus memory device configuration

	6 OCTOSPI application examples
	6.1 Implementation examples
	6.1.1 Using OCTOSPI in a graphical application
	Figure 15. OCTOSPI graphic application use case

	6.1.2 Executing from external memory: extend internal memory size
	Figure 16. Executing code from memory connected to OCTOSPI2

	6.2 OCTOSPI configuration with STM32CubeMX
	6.2.1 Hardware description
	Figure 17. Octo-SPI flash memory and PSRAM connection on STM32L4P5G-DK

	6.2.2 Use case description
	6.2.3 OCTOSPI GPIOs and clocks configuration
	I. STM32CubeMX: GPIOs configuration
	Table 5. STM32CubeMX - Memory connection port

	STM32CubeMX: OCTOSPI GPIOs configuration
	Figure 18. STM32CubeMX - Octo-SPI mode window for OCTOSPI1 or OCTOSPI2
	Table 6. STM32CubeMX - Configuration of OCTOSPI signals and mode
	Figure 19. STM32CubeMX - Setting PE13 pin to OCTOSPIM_P1_IO1 AF
	Figure 20. STM32CubeMX - GPIOs setting window
	Figure 21. STM32CubeMX - Setting GPIOs to very-high speed

	II. STM32CubeMX: Enabling interrupts
	Figure 22. STM32CubeMX - Enabling OCTOSPI global interrupt

	III. STM32CubeMX: clocks configuration
	Figure 23. STM32CubeMX - System clock configuration
	Figure 24. STM32CubeMX - OCTOSPI1 and OCTOSPI2 clock source configuration

	6.2.4 OCTOSPI configuration and parameter settings
	Figure 25. STM32CubeMX - OCTOSPI configuration window
	Table 7. STM32CubeMX - Configuration of OCTOSPI parameters

	6.2.5 STM32CubeMX: Project generation
	Indirect and Memory-mapped mode configuration
	I. Octo-SPI PSRAM in Regular-command protocol example
	II. Octo-SPI FLASH in Regular-command protocol example
	III. Quad-SPI PSRAM in Regular-command protocol example
	IV. HyperFlash and HyperRAM memories with Multiplexed mode example
	Figure 26. STM32CubeMX - DMA1 configuration

	7 Performance and power
	7.1 How to get the best read performance
	7.2 Decreasing power consumption
	7.2.1 STM32 low-power modes
	7.2.2 Decreasing Octo-SPI and Hexadeca-SPI memory power consumption
	Timeout counter usage
	Put the memory in deep power-down mode
	Entering and exiting DPD mode

	8 Supported devices
	9 Conclusion
	10 Revision history
	Table 8. Document revision history

