STMicroelectronics: Cortex™-M4 Training STM32F407 DZ'KE":

Discovery evaluation board using ARM® Keil™ MDK Toolkit Tools by ARM

featuring Serial Wire Viewer Summer 2012 Version 1.1 by Robert Boys, bob.boys@arm.com

Introduction: For the latest version of this document: www.keil.com/appnotes/docs/apnt_230.asp

The purpose of this lab is to introduce you to the STMicroelectronics Cortex™-M4 processor using the ARM® Keil™ MDK
toolkit featuring the IDE pVision®. We will use the Serial Wire Viewer (SWV) and the on-board ST-Link V2 Debug Adapter.
At the end of this tutorial, you will be able to confidently work with these processors and Keil MDK. See www.keil.com/st.

Keil MDK supports and has examples for most ST ARM processors. Check the Keil Device Database® on www keil.com/dd
for the complete list which is also included in MDK: in pVision, select Project/Select Device for target...

Linux: ST processors running Linux, Android and bare metal are supported by ARM DS-5". www.arm.com/ds5.

Keil MDK-Lite™ is a free evaluation version that limits code size to 32 Kbytes. Nearly all Keil examples will compile within
this 32K limit. The addition of a valid license number will turn it into the full commercial version.

RTX RTOS: All variants of MDK contain the full version of RTX with source code. See www.keil.com/rl-arm/kernel.asp.

Why Use Keil MDK ? MDK provides these features particularly suited for Cortex-M users:

1. pVision IDE with Integrated Debugger, Flash programmer and
the ARM® Compiler toolchain. MDK is a turn-key product.

2. A full feature Keil RTOS called RTX is included with MDK.
RTX comes with a BSD type license. Source code is provided.

3. Serial Wire Viewer and ETM trace capability is included.
RTX Kernel Awareness window. It is updated in real-time.

5. Kernel Awareness is available for Keil RTX, CMX, Quadros,
Micrium and FreeRTOS. All RTOSs will compile with MDK.

6. Keil Technical Support is included for one year and is easily
renewable. This helps you get your project completed faster.

This document details these features:
Serial Wire Viewer (SWV) and ETM trace. Real-time tracing updated while the program is running.

2. Real-time Read and Write to memory locations for Watch, Memory and RTX Tasks windows. These are non-
intrusive to your program. No CPU cycles are stolen. No instrumentation code is added to your source files.

3. Six Hardware Breakpoints (can be set/unset on-the-fly) and four Watchpoints (also known as Access Breaks).
4. RTX Viewer: a kernel awareness program for the Keil RTX RTOS that updates while your program is running.
5. A DSP example program using ARM CMSIS-DSP libraries. www.arm.com/cmsis

Serial Wire Viewer (SWV):

Serial Wire Viewer (SWV) displays PC Samples, Exceptions (including interrupts), data reads and writes, ITM (printf), CPU
counters and a timestamp. This information comes from the ARM CoreSight™ debug module integrated into STM32 CPU.
SWYV does not steal any CPU cycles and is completely non-intrusive. (except for the ITM Debug printf Viewer).

CoreSight displays memory contents and variable values in real-time and these can be modified on-the-fly.

Embedded Trace Macrocell (ETM):

ETM displays all the program counter values that were executed. This is very useful for debugging program flow problems
such as “going into the weeds” and “how did I get here?”. Keil uVision uses ETM to provide Code Coverage, Performance
Analysis and code execution times. ETM requires a special debug adapter such as a ULINKpro. The Discovery series do not
have the ETM connector even though the processor has ETM. Most other ST and Keil boards do have this connector.

Discovery Board Debug Adapter Connections:

The STM32F407 Discovery board lacks the standard ARM debugger connections. This means it is not easy to connect a
ULINK?2, ULINKpro or J-Link to these boards. In order to use features like ETM trace, it is easier to obtain a board such as
the Keil MCBSTM32 series or a STM32xxx-EVAL board. Versions are available with Cortex-M3 and Cortex-M4 processors.
Keil MDK has examples and labs for these boards. This document uses only the on-board ST-LINK. See www.keil.com/st.

1 Copyright © 2012 ARM Ltd. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com

Index:

1. Keil Evaluation Software: 3
2. Keil Software Installation: 3
3. CoreSight Definitions: 3
4. CMSIS: Cortex Microcontroller Software Interface Standard 3
5. Configuring the ST-Link V2: 4
6. Blinky example using the STM32F4 Discovery board: 6
7. Hardware Breakpoints: 6
8. Call Stack & Locals window: 7
9. Watch and Memory windows and how to use them: 8
10. How to view Local Variables in Watch and Memory windows: 9
11. View Variables Graphically with the Logic Analyzer (LA): 10
12. Watchpoints: Conditional Breakpoints 11
13. RTX_Blinky example: Keil RTX RTOS: 12
14. RTX Kernel Awareness using RTX Viewer: 13
15. Logic Analyzer: View variables real-time in a graphical format: 14
16. ITM (Instruction Trace Macrocell): 15
17. Serial Wire Viewer (SWV) and how to use it: 16
1) Data Reads and Writes 16
2) Exceptions and Interrupts 17
3) PC Samples (program counter samples) 18
18. Serial Wire Viewer (SWV) Configuration: 19
19. DSP Sine Example using ARM CMSIS-DSP Libraries 20
20. Creating your own project from scratch: 24
21. ETM Trace and its benefits: for reference 26
22. Serial Wire Viewer summary: 32
23. Useful Documents: 32
24. Keil Products and contact information: 33

Notes on using this document:

1. The latest version of this document and the necessary example source files are available here:
www.keil.com/appnotes/docs/apnt_230.asp

2. Configuring the ST-Link V2 debug adapter starts on page 4.
The on-board ST-Link V2 is used by default in this document. All you need install is the USB driver.

4. If you are using MDK 4.54 or earlier, a patch is available to enhance the performance of the ST-Link V2. It is
available on the website above. If you are using MDK 4.60 or later, you do not need this patch.

The original ST-Link (usually called V1) is supported by puVision but Serial Wire Viewer is not.

6. The first exercise starts on page 6. You can go directly there if using a ST-Link If you are using a ULINK2,
ULINKME or a ULINKpro, you will need to configure it appropriately as described on the following pages.

7. The ST-Link V2 interfaces very well with Keil pVision and its performance is quite good including SWV.

2 Copyright © 2012 ARM Ltd. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com

1) Keil Evaluation Software:
Example Programs:

MDK contains many useful ready-to-run examples for boards using ST processors. See C:\Kei\ARM\Boards\ST and \Keil.
Many examples are provided to also run in the Keil Simulator. No hardware is needed in these cases.

MDK 4.54 contains two example programs: Blinky and RTX Blinky. This Blinky is used in this lab. RTX_ Blinky must be
upgraded. The new one blinks all four leds on the Discovery board. A new example, DSP must also be added.

These files can be downloaded from www.keil.com/appnotes/docs/apnt 230.asp. The latest version of this document is also
available at this location. Put these two directories in file C:\Kei\ARM\Boards\ST\STM32F4-Discovery\ to create \DSP and
\RTX_ Blinky directories respectively.

Keil has several labs for various STM32 processors including one using CAN. See www.keil.com/st for details.

The directory \RL consists of middleware examples. Such middleware is a component of MDK Professional. To run these
examples a full license is needed. Please contact Keil sales for a temporary license if you want to evaluate Keil middleware
and for the list of supported processors.

STMicroelectronics has an entire suite of examples for various STM32 processors using Keil MDK. See www.st.com.
Keil Sales: In USA and Canada: sales.us@keil.com or 800-348-8051. Outside the US: sales.intl@keil.com

2) Keil Software Installation:

This document was written using Keil MDK 4.54 or later which contains pVision 4. The evaluation copy of MDK (MDK-
Lite) is available free on the Keil website. Do not confuse pVision 4 with MDK 4.0. The number “4” is a coincidence.
Nearly all example programs can be compiled within the 32K limit of MDK-Lite: the free evaluation version.

To obtain a copy of MDK go to www.keil.com/arm and select the “Download” icon located on the right side.
You can use the evaluation version of MDK-Lite and a ULINK2, ULINK-ME, ULINKpro or J-Link (black case) for this lab.

If you are using MDK 4.54 or earlier, get the ST-Link V2 patch form the Keil website (URL is above) and extract the files to
C:\KeilARM\STLink\ If you are using MDK 4.60 or later you do not need this patch.

3) CoreSight Definitions: It is useful to have a basic understanding of these terms:
e JTAG: Provides access to the CoreSight debugging module located on the Cortex processor. It uses 4 to 5 pins.

e SWD: Serial Wire Debug is a two pin alternative to JTAG and has about the same capabilities except for no
Boundary Scan. SWD is referenced as SW in the uVision Cortex-M Target Driver Setup. See page 4, 2™ picture.
The SWIJ box must be selected in ULINK2/ME or ULINKpro. SWV must use SWD because of the TDIO conflict
described in SWO below.

e SWV: Serial Wire Viewer: A trace capability providing display of reads, writes, exceptions, PC Samples and printf.

DAP: Debug Access Port. A component of the ARM CoreSight debugging module that is accessed via the JTAG or
SWD port. One of the features of the DAP are the memory read and write accesses which provide on-the-fly memory
accesses without the need for processor core intervention. pVision uses the DAP to update memory, watch and
RTOS kernel awareness windows in real-time while the processor is running. You can also modify variable values
on the fly. No CPU cycles are used, the program can be running and no code stubs are needed in your sources.

You do not need to configure or activate DAP. pVision does this automatically when you select the function.

e SWO: Serial Wire Output: SWV frames usually come out this one pin output. It shares the JTAG signal TDIO.
e Trace Port: A 4 bit port that ULINKpro uses to collect ETM frames and optionally SWV (rather than SWO pin).
e ETM: Embedded Trace Macrocell: Provides all the program counter values. Only the ULINKpro provides ETM.

4) CMSIS: Cortex Microcontroller Software Interface Standard

ARM CMSIS-DSP libraries are offered for all Cortex-M3 and Cortex-M4 processors.

CMSIS-RTOS provides standard APIs for RTOSs. RTX is a free RTOS available from ARM as part of CMSIS Version 3.0.
STMicroelectronics example software is CMSIS hardware abstraction layer compliant.

See www.arm.com/cmsis and www.onarm.com/cmsis/download/ for more information.

3 Copyright © 2012 ARM Ltd. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com

5) Configuring the ST-Link V2:

It is easy to select a USB debugging adapter in pVision. You must configure the connection to both the target and to Flash

programming in two separate windows as described below. They are each selected using the Debug and Utilities tabs.

Using other Debug Adapters: This document will use the on-board ST-Link. You can use a ULINK2 or a ULINKpro with
suitable adjustments. You would need a suitable adapter to connect a different adapter to the SWD connector on the

Discovery board. Some step(s) to turn off the on-board ST-Link adapter will also be necessary to avoid conflicts. It is

reported that shorting solder bridge SB10 will hold the ST-Link processor in RESET allowing external adapter operation.

If your debugging sessions are unreliable, please check for additional conflicts or loading on the SWD pins. The SWD

connector provides the ability to use the Discovery board as a debug adapter on another board. Its main purpose is not to

connect an external tool such as a Keil ULINK2. Some adaptation is required.

The ST-Link is selected as the default debug adapter for the Keil examples for the Discovery board.

Serial Wire Viewer (SWV) is completely supported by ST-LINK Version 2. Firmware V2.16.S0.

Step 1) Installing the ST-Link USB Drivers: (you need to do this the first time only)

1. Do not have the Discovery board USB port connected to your PC at this time.

2. The USB drivers must be installed manually by executing ST-Link V2 USBdriver.exe. This file is found in

C:\KeilARM\STLink\USBDriver. Find this file and double click on it.

3. Plug in the Discovery board to USB CN1. The USB drivers will now finish installing in the normal fashion.

Super TIP: The ST-Link V2 firmware update files are located here: C:\KeilARM\STLink. This updates the Discovery ST-
Link firmware by executing ST-LinkUpgrade.exe. Find this file and double click on it. It will check and report the current

firmware version. It is important you are using firmware V2.J16.S0 or later for proper SWV operation. The patch for MDK

4.54 and earlier is here: www.keil.com/appnotes/docs/apnt_230.asp

Step 2) Select the debug connection to the target: The following steps are already done by default in the three example

programs. These instructions are provided for reference.

1. Connect your PC to the Discovery board with a USB cable. Start pVision. It must be in Edit mode (as it is when
first started — the alternative to Debug mode) and you have selected a valid project.

2. Select Target Options &N or ALT-F7 and select the Debug tab. In the drop-down menu box select ST-Link
e ——————

Debugger as shown here:
TIP: Do NOT select ST-Link (Deprecated Version).

3. Select Settings and the next window below opens up. This is the control
panel for the ULINKSs and ST-Link. (they are the same).

j Linker Debug | Usiites |

& |se: IST—Link Debugger

4. InPort: select SW. JTAG is not a valid option for ST-Link and this board. SW is also known as SWD.

5. Inthe SW Device area: ARM CoreSight SW-DP MUST be displayed. This confirms you are connected to the target
processor. If there is an error displayed or it is blank this must be fixed before you can continue. Check the target

power supply. Cycle the power to the board.

j Settings |

Debug | Trace | Fissh Downioad |
. . . ~Debug Adapter SW Device
TIP: To refresh this screen select Port: and change it or click v [FTONKYZ] o e I M
OK once to leave and then click on Settings again. T || SR s U |
. : : . HW Version: [V2 D]
TIP: You can do everything with SW (SWD) as you can with . T
I | Rl F utcmatic Datschion 10 CopE: |
JTAG except for boundary scan. ot = € Henusl Confiursion DesiceName [
Max Clack: [1MHz = Add Deletel Update IR [en I
. . - ~Debu
Next: configure the Keil Flash programming tool: Camnect & ResetOpton Cache Optns | Downlead Opins
Connect: [Nomal x| Reset:[atodetect x| | | ¥ Cache Code [¥ Verfy Code Download
¥ Reset after Connect ¥ Cache Memory | | ™ Download to Flash

x|

o]

Cancel

Ay

4 Copyright © 2012 ARM Ltd. All rights reserved

STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit

www.keil.com

Step 3) Configure the Keil Flash Programmer:
6. Click on OK once and select the Utilities tab.
7. Select the ULINK similar to Step 2 above.
8. Click Settings to select the programming algorithm if it is not visible or is the wrong one.
9. Select STM32F4xx Flash as shown here or the one for your processor:
10. Click on OK once. B

. Debug | Trace Fissh Download |
TIP: To program the Flash every time you enter Debug mode, T T

CheCk Update target before Debugging' %g f(; ::: ;l;udf‘: g \P‘:i%’(am Start: | 2<20000000 Size: |2<0200

" DonotEase [~ Resetand Run

11. Click on OK to return to the pVision main screen.

i~ Programming Algorithm

M Description | Device Type | Device Size | Address Range: |
1 2 ° SeleCt Flle/save All' STM32F4xc Flash On-chip Fash ™ (02000000H - 0S0FFFFFH

13. You have successfully connected to the STM32 target
processor and configured the pVision Flash

programmer. Start: (102000000 || Size: [0<D0100000
TIP: The Trace tab is where you configure the Serial Wire Add Remove

Viewer (SWV). You will learn to do this later.

oK Cancel Help

COM led LD1 indication:

LED is blinking RED: the first USB enumeration with the PC is taking place.

LED is RED: communication between the PC and ST-LINK/V?2 is established (end of enumeration). pVision is not connected
to ST-Link (i.e. in Debug mode).

LED is GREEN: pVision is connected in Debug mode and the last communication was successful.

LED is blinking GREEN/RED: data is actively being exchanged between the target and pVision.

No Led: ST-LINK/V2 communication with the target or pVision has failed. Cycle the board power to restart.

Running programs in the internal STM32 RAM:

It is possible to run your program in the processor RAM rather than Flash. In this case, the Flash programming tool is not

used nor is the Load icon. After successfully compiling the source files, click on Debug icon @ . An .ini file configures the
processor and loads your executable into RAM.

The Discovery Blinky project has a RAM setting. Select STM32F407 RAM as shown Project Flash Debug Peripherals 1
here if you want to try this mode. _——_m— A P
9 STM32F407 RAM - &K

Loading and Running your program into RAM:
1. Select STM32F407 RAM as shown above.

i x|
2. Select Target Options &N or ALT-F7 and select the Debug tab.
o]) o) | Linker Debug | Uilties |
3. The ini file is located in the Initialization File: box as shown here: & Lse: [STnk Dobugaer e |
4. Click on Edit... to view its contents.
5. Click on OK to return to the main pVision window. [Wosd Prmpkcstoniat St S - e 2]
6. Return to the STM32F407 Flash setting. rEmn B

[\Dbg_RAM i J Ed.. |

5 Copyright © 2012 ARM Ltd. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com

6) Blinky example program using the ST Discovery board:
We will connect a Keil MDK development system using real target hardware using the built-in ST-Link debug adapter.

Start pVision by clicking on its desktop icon. - Connect your PC to the board with a USB cable to CN1.
Select Project/Open Project. Open the file C:\Kei\ARM\Boards\ST\STM32F4-Discovery\Blinky\Blinky.uvproj

By default, the ST-Link is selected. If this is the first time you have run pVision and the Discovery board, you will

need to install the USB drivers. See the configuration instructions on the preceding page in this case.

ﬁii

Compile the source files by clicking on the Rebuild icon. ¥ | You can also use the Build icon beside it.
LAl

Program the STM32 flash by clicking on the Load icon: ¥# Progress will be indicated in the Output Window.

Enter Debug mode by clicking on the Debug icon. @ Select OK if the Evaluation Mode box appears.
Note: You only need to use the Load icon to download to FLASH and not for RAM operation if it is chosen.

Click on the RUN icon. Note: you stop the program with the STOP icon. Q

The LEDs on the STM32F4 Discovery board will now blink in succession.
Press the USER button and they will all come on.

Now you know how to compile a program, program it into the STM32 processor Flash, run it and stop it !

Note: The board will start Blinky stand-alone. Blinky is now permanently programmed in the Flash until reprogrammed.

7) Hardware Breakpoints:

The STM32F4 has six hardware breakpoints that can be set or unset on the fly while the program is running.

1. With Blinky running, in the Blinky.c window, click on a darker block in the left margin on a line in main() in the
while loop. Between around lines 80 through 91 will suffice.
2. A red circle will appear and the program will stop.
Note the breakpoint is displayed in both the disassembly and source windows as shown below:
4. You can a breakpoint in either the Disassembly or Source windows as long there is a gray rectangle indicating the
existence of an assembly instruction at that point.
5. Every time you click on the RUN icon the program will run until the breakpoint is again encountered.
. . ® e W
6. You can also click on Single Step (Step In) b , Step Over { and Step Out & .
Disassembly 2 x|
FS: if (num == LED NUM) { dir = -1; num = LED NUM-1; } ;I
. . 0x0800054E 2C04 cMP x4, #0x04
TIP: If single step (Step In) doesn’t work, click on the px08000350 Dlo2 ENE exos0sses
Disassembly window to bring it into focus. If needed, click on a pxofo0osss 2403 movs z,hon03
disassembly line. This tells pVision you want to single step at the s stes if (mum < 0) { dir = 1 nom = 0
assembly level rather than at the C source level. p=osacosse 2c00 - ce A
. 0x0800055C 2501 MOVS r5,£0x01
TIP: A hardware breakpoint does not execute the instruction it is oxoouossE 200 oV 24,4000 _
set to. ARM CoreSight breakpoints are no-skid. This is a rather Ll e ;
important feature. Earlier versions of pVision required a double L) o | 9 sy a7 19 i || |) =
click to set a breakpoint and displayed as a square. = I ens 1= (Lo € .
7. Remove all the breakpoints when you are done for the & ss | it = seo s 1 esz = 2: mom = cenwowes;
next exercise. :: else if (num < 0) { dir = 1; num = 0; }
88 LED Cn E?JJT):
TIP: You can delete the breakpoints by clicking on them or i 2D, O£ (orm)
selecting Debug/Breakpoints (or Ctrl-B) and selecting Kill All. o -
Click on Close to return. e o

TIP: You can view the breakpoints set by selecting Debug/Breakpoints or Ctrl-B.

6 Copyright © 2012 ARM Ltd. All rights reserved

STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com

8) Call Stack + Locals Window:
Local Variables:

The Call Stack and Local windows are incorporated into one integrated window. Whenever the program is stopped, the Call
Stack + Locals window will display call stack contents as well as any local variables belonging to the active function.

If possible, the values of the local variables will be displayed and if not the message <not in scope> will be displayed. The
Call + Stack window presence or visibility can be toggled by selecting View/Call Stack window.

1. Run and Stop Blinky. Click on the Call Stack + Locals tab.

2. Shown is the Call Stack + Locals window. Call Stack + Locals
The contents of the local variables are displayed as well as Mame Location/Value Type
names of active functions. Each function name will be - @ Delay 0x0B000482 void flunsigned int)
displayed as it is called from the function before it or from % diyTicks 0x000000C8 param - unsigned int
an interrupt or exception. W curTicks 0x:0000012C auto - unsigned int
. . . El- % main 0x080004D0 int f{
When a function exits, it is removed from the list. i @ num wutoint
The first called function is at the bottom of this table. ----- @ dir 0x00000001 auto - int
This table is active only when the program is stopped. | ¥ btns 0x00000000 aute - unsigned int
il} ,j Call 5tack + Locals | Memory 1 |

Click on the Step In icon or F11:
4. Note the function different functions displayed as you step through them. If you get trapped in the Delay function,

l
use Step Out & or Ctrl-F11 to exit it faster.
Click numerous times on Step In and see other functions.

6. Right click on a function name and try the Show Callee Code and Show Caller Code options as shown here:

. . {r]__l . . . FatP aleluTalal kK] I VO

7. Click on the StepOut icon to exit all functions to return to main(). 9 num Show Caller Code -

I main Show Callee Code lind

TIP: If single step (Step In) doesn’t work, click on the Disassembly window to - % num lau
bring it into focus. If needed, click on a disassembly line. @ dir V| Hexadecimal Display [,
- @ htns [nsninninnnng lan

TIP: You can modify a variable value in the Call Stack & Locals window when the program is stopped.

TIP: This is standard “Stop and Go” debugging. ARM CoreSight debugging technology can do much better than this. You
can display global or static variables updated in real-time while the program is running. No additions or changes to your code
are required. Update while the program is running is not possible with local variables because they are usually stored in a
CPU register. They must be converted to global or static variables so they always remain in scope.

Changing a local variable to a static or global normally means it is moved from a CPU register to RAM. CoreSight can view
RAM but not CPU registers when the program is running.

Call Stack:

The list of stacked functions is displayed when the program is stopped as you have seen. This is useful when you need to
know which functions have been called and what return data is stored on the stack.

TIP: You can modify a variable value when the program is stopped.

TIP: You can access the Hardware Breakpoint table by clicking on Debug/Breakpoints or Ctrl-B. This is also where
Watchpoints (also called Access Points) are configured. You can temporarily disable entries in this table.

Selecting Debug/Kill All Breakpoints deletes Breakpoints but not Watchpoints.

7 Copyright © 2012 ARM Ltd. All rights reserved

STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com

9) Watch and Memory Windows and how to use them:

The Watch and memory windows will display updated variable values in real-time. It does this through the ARM CoreSight
debugging technology that is part of Cortex-M processors. It is also possible to “put” or insert values into these memory
locations in real-time. It is possible to “drag and drop” variable names into windows or enter them manually.

Watch window:
Add a global variable: Recall the Watch and Memory windows can’t see local variables unless stopped in their function.

Stop the processor Q and exit debug mode. @
2. In Blinky.c declare a global variable (I called it value) near line 21 like this: unsigned int value = 0;

Add the statements value++; and if (value > 0x10) value = 0;as shown here near line 93:

o~ Lon 92 Pel;y (200 ;
4. Click on Rebuild. 2 Click on Load #%# to program the Flash. = yatues

94 if (value > 0x10) walue = 0;
5. Enter Debug mode. @ Click on RUN . Recall you can set Watch and 2% else ¢

Memory windows while the program is running.

Open the Watch 1 window by clicking on the Watch 1 tab as shown or select View/Watch Windows/Watch 1.

In Blinky.c, block value, click and hold and drag it into Watch 1. Release it and value will be displayed as shown

here: Watch 1 o x

8. value will increment until 0x10 in real-time. Mame VB e
TIP: You can also right click on the variable name and select e 0x00000003 unsigned int
Add value to ... and select Watch 1. - <Enter expression> |
TIP: Make sure View/Periodic Window Update is selected. & Call Stack + Locals | Waten1 | B Memory 1

9. You can also enter a variable manually by double-
clicking under Name or pressing F2 and using copy and paste or typing the variable.

TIP: To Drag ‘n Drop into a tab that is not active, pick up the variable and hold it over the tab you want to open; when it
opens, move your mouse into the window and release the variable.

6. Double click on the value for value in the Watch window. Enter the value 0 and press Enter. 0 will be inserted into
memory in real-time. If this variable is updated very quickly, it is possible to not see the result...but it happened.

Memory window:
1. Drag ‘n Drop value into the Memory 1 window or enter it manually. Select View/Memory Windows if necessary.

2. Note the value of value is displaying its address in Memory 1 as if it is a pointer. This is useful to see what address
a pointer is pointing to but this not what we want to see at this time.

Add an ampersand “&” in front of the variable name and press Enter. The physical address is shown (0x2000_0014).
Right click in the memory window and select Unsigned/Int.

The data contents of value is now displayed as a 32 bit value.

Both the Watch and Memory windows are
updated in real-time. Address: [ovaos EI ﬂ

0x20000014: 00000003 00C0OB17E 00000000 ©O000000C QOOOCOO0O

AN NS

7. You can modify value in the Memory

window with a right-click with the mouse 0x20000028: 00000000 00000000 00000000 00000000 00000000
cursor over the data field and select Modify |ox2000003c: coocoooo 00000000 00000000 00000000 00000000
Memory. 0x20000050: 00000000 00000000 00000000 00000000 00000000

0x20000064: 00000000 0O0CO0Q000 00000000 2000001C 0B00020D ﬂ

-;,-'j Call Stack + Locals | Watch 1 | [Memaory 1

TIP: No CPU cycles are used to perform these
operations. See the next page for an explanation how this works.

TIP: To view variables and their location use the Symbol window. Select View/Symbol Window while in Debug mode.

Serial Wire Viewer does not need to be configured in order for the Memory and Watch windows to operate as shown. This
mechanism uses a different feature of CoreSight than SWV. These Read and Write accesses are handled by the Serial Wire
Debug (SWD) or JTAG connection via the CoreSight Debug Access Port (DAP), which provides on-the-fly memory accesses.

8 Copyright © 2012 ARM Ltd. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com

10) How to view Local Variables in the Watch or Memory windows:

Make sure Blinky.c is running. We will use the local variables from main() num, dir and btns.

—_—

2. Locate where the three local variables as declared in Blinky.c near line 67, at the start of the main function.

Drag and Drop each variable into Watch 1 window. Note it says < not in scope > because pVision cannot access
the CPU registers while running which is where value is probably located.

4. Set a breakpoint in the Blinky.c while loop. The problem will [

stop the program and the current variable values will appear.

MName Type

Remove this breakpoint. unsigned int

Set a breakpoint at if (btns !'= (UL << 0)) { near line 83.

unsigned int

Start the program, hold down the User button and the
program will stop. A btns value of 1 will display. Without

Memory 1 |

User pressed, a 0 will be displayed if you click on Run again. §aCallStack ~ Locals | Waten1 |
TIP: Remember: you can set and unset hardware breakpoints on-the-fly in the Cortex-M4 while the program is running !

8. uVision is unable to determine the value of these three variables when the program is running because they exist only
when main is running. They disappear in functions and handlers outside of main. They are a local or automatic
variable and this means it is probably stored in a CPU register which pVision is unable to access during run time.

9. Remove the breakpoint and make sure the program is not running @ Exit Debug mode. @
How to view local variables updated in real-time:
All you need to do is to make the local variables num, dir and btns global where it is declared in Blinky.c !
1. Move the declarations for num, dir and btns out of main() and to the top of Blinky.c to make them global variables:
int main (void) {

int32_t num = -1;
int32_t dir = 1;
uint32_t btns = 0;

TIP: You can edit files in edit or debug mode. However, you can compile them only in edit mode.

2. Compile the source files by clicking on the Rebuild icon. They will compile with no errors or warnings.
LOAD

3. To program the Flash, click on the Load icon. ¥#. A progress bar will be displayed at the bottom left.

TIP: To program the Flash automatically when you enter Debug mode select Target Options AN , select the Utilities tab and
select the “Update Target before Debugging” box.

4. Enter Debug mode. @

Click on RUN.

6. Now the three variables are updated in real-time. Press and release the User button and btns will update to 0 or 1.
This is ARM CoreSight technology working.

7. You can read (and write) global, static variables and structures. Anything that stays around in a variable from
function to function. This includes reads and writes to peripherals.
8. Stop the CPU and exit debug mode for the next step. Q and @
TIP: View/Periodic Window Update must be selected. Otherwise variables update only when the program is stopped.
How It Works:

pVision uses ARM CoreSight technology to read or write memory locations without stealing any CPU cycles. This is nearly
always non-intrusive and does not impact the program execution timings. Remember the Cortex-M4 is a Harvard architecture.
This means it has separate instruction and data buses. While the CPU is fetching instructions at full speed, there is plenty of
time for the CoreSight debug module to read or write values without stealing any CPU cycles.

This can be slightly intrusive in the unlikely event the CPU and pVision reads or writes to the same memory location at
exactly the same time. Then the CPU will be stalled for one clock cycle. In practice, this cycle stealing never happens.

9 Copyright © 2012 ARM Ltd. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com

11) View Variables Graphically with the Logic Analyzer (LA):

We will display the global variable value you created earlier in the Logic Analyzer. No code stubs in the user code will be
used. This uses the Serial Wire Viewer and therefore does not steal CPU cycles.

1. Stop the processor Q and exit Debug mode. @
Configure Serial Wire Viewer (SWV):

4T

2. Select Target Options &N or ALT-F7 and select the Debug tab. Select Settings: on the right side of this window.
Confirm SW is selected. SW selection is mandatory for SWV. ST-Link uses only SWD. Select the Trace tab.
3. Inthe Trace tab, select Trace Enable. Unselect Periodic and EXCTRC. Set Core Clock: to 53.76 MHz. Everything
else is set as shown here: T lcorioxt Torgetomversewy E
4. Click OK once to return to the Debug tab. —
. R . o Core Clock: | 53.760000 MHz ¥ Trace Enable
5. in the Initialization File: box: select STM32 SWO.ini from I Tmesam Trace Evert
C:\Kei\ARM\Boards\Kei\MCBSTM32C\Blinky Ulp: Seid Vire Outpul UARTAVRZ =] | | ¥ Enable Prescair [<] II: & c;:;; b
You can use the Browse icon to locate and enter it. This BT o s [res] || S S
file configures the STM32 SWV module and default is for WOk [T W | | puse rones [0 | | I ot pates v
SWV. I™ on Data RAW Sample I™ EXCTRC: Exception Tracing
6. Click OK once to return to the main menu. Enter debug 7ITME:":U‘_U:::;FFFF B Pt 2#; Pt e l5 Pa 87 Fai_ D
able lvlvielviviviv [wivivivieiviviv [ivieiviviviviv [elvivieivivivie
@ Prviege: [B0000000E | Pot31.24 ¥ Pot23.16 [~ Port 15.8 [~ Pot 7.0 [~
mOde : -~ Advanced settings
Configure Logic Analyzer: B o
1. Open View/Analysis Windows and select Logic Analyzer Toc | cnes | oo
or select the LA window on the toolbar.
2. Click on the Blinky.c tab. Right click on value and select Add value to... and then select Logic Analyzer. You can
also Drag and Drop or enter manually. x
3. Click on the Select box and the LA Setup window appears: [Curent Logic syt Faras. it
4. With value selected, set Display Range Max: to 0x15 as shown here:
5. Click on Close.
Run Program: Note: The LA can be configured while the program is running. A 2
- Signal Dispiay Display Range
1) Click on Run. Click on Zoom Out until Grid is about 1 second. [:IWW IL? :ax :z;FF
. g - . . | ecimal
2) The variable value will increment to 0x10 (decimal 16) and then is set to 0. ’—mewFimua(S:z Wask) 7> Shf
TIP: You can show up to 4 variables in the Logic Analyzer. These variables must be ::TWIWFFFFF ek
global, static or raw addresses such as *((unsigned long *)0x20000000). (ot Sorel Ocfriiors.. | _ et Sl Defions. |‘
Range Max: to 0x2. = = =

3) Enter the static variable btns into the LA and set the Display

Click on RUN and press the User button and see the voltages below:

4) Select Signal Info, Show Cycles, Amplitude and Cursor to see the effects they have.

5) Stop the CPU. @

Logic Analyzer

[Setup ILnad Min Time: Max Time: Grid Zoom Code Trace Setup Min/Max Update Screen| Transition I~ Sgnallfo [
[o T e e) et
) : : 3 I 3 : : : : 3 3 3 :

value

bins

0

)

62827743

3282774s 46827745
o | |
@Dlsassemh\y ‘ ﬂ Logic Analyzer
10 Copyright © 2012 ARM Ltd. All rights reserved

STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit

www.keil.com

12) Watchpoints: Conditional Breakpoints

Recall STM32 processors have 6 hardware breakpoints. These breakpoints can be set on-the-fly without stopping the CPU.
The STM32 also have four Watchpoints. Watchpoints can be thought of as conditional breakpoints. The Logic Analyzer uses
the same comparators as Watchpoints in its operations. This means in pVision you must have two variables free in the Logic
Analyzer to use Watchpoints. Watchpoints are also referred to as Access Breakpoints.

1. Use the same Blinky configuration as the previous page. Stop the program if necessary. Stay in debug mode.

2. We will use the global variable value you created in Blinky.c to explore Watchpoints.

3. The Trace does not need to be configured for Watchpoints. However, we will use it in this exercise.

4. The variable value should be still entered in the Logic Analyzer from the last exercise on the previous page.

5. Select Debug in the main pVision window and select Breakpoints or press Ctrl-B.

6. Inthe Expression box enter: “value == 0x5” without the quotes. Select both the Read and Write Access.

7. Click on Define and it will be accepted as shown here: Click on Close.

8. Enter the variable value to the Watch 1 window pessrse
bg/ dragging and dropping it if it is not already oo
there. 00: (A readwrite 0x20000014 len=4), ‘value==0x5",

9. Open Debug/Debug Settings and select the trace
tab. Check “on Data R/W sample”, uncheck
EXTRC and ITM 31 and 0.

10. Click on OK twice. Open the Trace Records

BRI 4 | H
window. Becoxds Acoess

11. Click on RUN Egpression: || P Red O Wiie

. . . Fris |1 :: Size:

12. You will see value change in the Logic Analyzer o = T = I Bytes
as well as in the Watch window. =] =i

13. When value equals 0x5, the Watchpoint will bove | iseees | wam | o | wo |
stop the program.

14. Note the data writes in the Trace Records window shown below. 0x5 is in the last Data column. Plus the address the
data written to and the PC of the write instruction. This is with the ST-Link. A ULINK2 will show the same
window. A ULINKpro or a J-Link (black case) will show a different display.

15. There are other types of expressions x
you can enter and are detailed in the Type Ovi[Num | Addess | Data | PC [Di| Cydes | Tmel) |=J
Help button in the Breakpoints e vire 20000141 00000002 ga000szH Zucia 4796002
window. Data Write 20000014H 00ODODO3H 080D0592H 2726619281 4868963002

Data Write 20000014H 00000004H 03000592H 2768619281 4943963002

16 TO repeat thls exercise CliCk on RUN Data Write 20000014H 00000005H 03000592H 2810619231 50.18963002

17. When finished, stop the program, click on Debug and select Breakpoints (or Ctrl-B) and Kill the Watchpoint.

18. Leave Debug mode.

TIP: You cannot set Watchpoints on-the-fly while the program is running like you can with hardware breakpoints.

TIP: To edit a Watchpoint, double-click on it in the Breakpoints
window and its information will be dropped down into the
configuration area. Clicking on Define will create another
Watchpoint. You should delete the old one by highlighting it and
click on Kill Selected or try the next TIP:

TIP: The checkbox beside the expression allows you to
temporarily unselect or disable a Watchpoint without deleting it.

TIP: Raw addresses can also be entered into the Logic Analyzer.
An example is: *((unsigned long *)0x20000000)

Logic Analyzer

2 x

value

4509563 s

Max Time Girid

Os [50.18%63s | 05s |[in |[0ut][A1] [Show ||[Shew | [Aue][Unde || [Stop

Zoom Code |T|ace ‘ Setup Min/Max |Updat55m

K|
[Bh Disassembly | B Logic Analyzer

u
.I

Shown above right is the Logic Analyzer window displaying the variable value trigger point of 0x5.

11

STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit

Copyright © 2012 ARM Ltd. All rights reserved

www.keil.com

13) RTX_Blinky Example Program with Keil RTX RTOS: A Stepper Motor example

Keil provides RTX, a full feature RTOS. RTX is included as part of Keil MDK including source. It can have up to 255 tasks
and no royalty payments are required. This example explores the RTX RTOS project. MDK will work with any RTOS. An
RTOS is just a set of C functions that gets compiled with your project. RTX comes with a BSD type license and source code.

NOTE: RTX Blinky supplied with MDK does not have the correct source files. This example is a two task project that
blinks a LED. Supplied with this document is an RTX Blinky that has fours tasks and lights four LEDs.

Obtain the source code for RTX Blinky\ from www.keil.com/appnotes/docs/apnt 230.asp and replace the contents in the
directory C:\Kei\ARM\Boards\ST\STM32F4-Discovery\RTX Blinky\. You can put it somewhere else if you prefer.

1. With pVision in Edit mode (not in debug mode): Select Project/Open Project.
2. Open the file C:\Kei\ARM\Boards\ST\STM32F4-Discovery\RTX Blinky\Blinky.uvproj.
3. This project is pre-configured for the ST-Link V2 debug adapter.

I+

4. Compile the source files by clicking on the Rebuild icon. =
Laal

5. To program the Flash manually, click on the Load icon. ¥#. A progress bar will be at the bottom left.

. They will compile with no errors or warnings.

6. Enter the Debug mode by clicking on the debug icon @ and click on the RUN icon.

7. The four LEDs will blink in succession indicting the signals for a stepper motor.

8. Click on STOP @

We will explore the operation of RTX with the Kernel Awareness windows.

The Configuration Wizard for RTX:

1. Click on the RTX Conf CM.c source file tab as shown below on the left. You can open it with File/Open if needed.
. ick on the Configuration Wizard tab at the bottom and your view will change to the Configuration Wizard.
2. Click on the Confi tion Wizard tab at the bott d 11 ch. to the Confi tion Wizard
3. Open up the individual directories to show the various configuration items available.
4. See how easy it is to modify these settings here as opposed to finding and changing entries in the source code.
5. Changing an attribute in one tab changes it in the other automatically. You should save a modified window.
6. You can create Configuration Wizards in any source file with the scripting language as used in the Text Editor.
7. This scripting language is shown below in the Text Editor as comments starting such as a </h> or <i>.
8. The pVision System Viewer windows are created in a similar fashion. Select View/System Viewer.
" [#] rRTX_Conf_tM.c l v X | Blinky.c RTX_Conf_CM.c | - x
091 #ifndef OS TICK =] Expard&ll | _Collapsedl | Help
ngz2 #define OS_TICK 10000
093 #endif Option [value
084 “Task Definitions
085 S e R . Number of concurrent running tasks 7
sk C;;RD"’ T —— mber of kasks with user-provided stack]
g7 3 _'_ - o s . sk stack size [bytes] 200
fan g . e = e B e eck For the stack owerflow Icd
e _ - ; i Mumber of user timers a
030 _*dEflne OS_ROEIN - J -SysTick Timer Configuration
091 #endif i Timer cock value [Hz] 72000000
03z . Timer tick value [us] 10000
093 s d-Rohin Task switchi Icd

095
096
097
nag

LLed]

%, Text Editor

034 S/

<i> Default: §
$ifndef O5_ROBINTOUT
#define 05_ROBINTCOUT 5

fendif _,ﬂ
*

Configuraiion Wizzrd

Text Editor: Source Code

-Re cl
.. Round-Robin Timeoul 3

Text Editar ?\Dnnﬁguralion Wizard

Configuration Wizard

12

STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit

Copyright © 2012 ARM Ltd. All rights reserved

www.keil.com

14) RTX Kernel Awareness using Serial Wire Viewer (SWV):

Users often want to know the number of the current operating task and the status of the other tasks. This information is
usually stored in a structure or memory area by the RTOS. Keil provides a Task Aware window for RTX.

[RTX Tarskn el Syrstemms

companies also provide awareness plug-ins for pVision.

Run RTX_Blinky again by clicking on the Run icon. R —

Open Debug/OS Support and select RTX Tasks and System
and the window on the right opens up. You might have to

| Stack e
Sach vath User-provided Stack:
Srack Crerflow Check:

IET]
-
ves
| vslstie: 7, Used: b

Other RTOS

grab the window and move it into the center of the screen. Taskinior JAvatipt: 7 Lo
These values are updated in real-time using the same read L. ey
write technology as used in the Watch and Memory windows. e T ey — =
o dock 1 Wet AND Qe i} 0100 %
Important TIP: View/Periodic Window Update must be selected ! (T T T
3. Open Debug/OS Support and select Event Viewer. There is Er== i N oo S
probably no data displayed because SWYV is not configured.
RTX Viewer: Configuring Serial Wire Viewer (SWV): v

We must activate Serial Wire Viewer to get the Event Viewer working.

Inttialization File:

Stop the CPU and exit debug mode. @ @

1.
, [\STMZ2_SWO i | e |
2. Click on the Target Options icon AN next to the target box.
Select the Debug tab. In the box Initialization File: enter \STM32_SWO.ini or use the Browse ... button. This file
configures the STM32 SWV module and is default is for SWV UART mode. This important entry is shown above:
Click the Settings box next to ST-Link Debugger.]
5. In the Debug window, make sure Port: is set to SW and "= % | o]
not JTAG. SWV works only with SW mode. oo UL LT o T lE
- Tracs Port i Trace Events
6. Click on the Trace tab to open the Trace window. Seral Wi Ouipt - UAHINAZ -] | | Enable Prescaler[1 =] | | ™ CPI:Cycles per nstruction
ock Prescaler: |22 — | I BXC:Posptonovethead
7. Set Core Clock: to 168 MHz and select Trace Enable. SO G ,';cdm e [] N il
8. Unselect the Periodic and EXCTRC boxes as shown: Skl 2ODDIKE ; o o ro e
on a ample ion Iracing
9. ITM Stimulus Port 31 must be checked. This is the M Stmdos Pots
method the RTX Viewer gets the kernel awareness e [P WWWRWRFR FRRRPRRR RRRRRERS FRRRVIR
information out to be displayed in the Event Viewer. Pviege: [5:00%090%8 Potstza bl Pz 6L Pmwmsl) Pat70 [
It is slightly intrusive. e pkts i SYHC
10. Click on OK twice to return to uVision. L Orente CrEeT
The Serial Wire Viewer is now configured in pVision. Ok]| cance el
11. Enter Debug mode and click on RUN to start the program.
12. Select “Tasks and System” tab: note the display is updated.
|
13. Click on the Event Viewer tab. ﬁ s [y [067 | 3] o] s |]
14. This window displays task events in a graphical formatas Z | {
shown in the RTX Kernel window below. You probably =) i | L] "i' ||
have to change the Range to about 0.2 seconds by clicking | BN TR |
on the Zoom ALL and then the + and — icons. ? HEE R
TIP:If Event Viewer doesn’t work, open up the Trace Records and |, | | | 11 HEN
confirm there are good ITM 31 frames present. Is Core Clock |
R . G 5 I
correct ? This project is running at 168 MHz. g | |

Cortex-M3 Alert: pVision will update all RTX information in real-
time on a target board due to its read/write capabilities as already

1R01606s
0]

described. The Event Viewer uses ITM and is slightly intrusive. e [

The data is updated while the program is running. No instrumentation code needs to be inserted into your source. You will

find this feature very useful ! Remember, RTX with source code is included with all versions of MDK.

TIP: You can use a ULINK2, ULINK-ME, ULINKpro, ST-Link V2 or J-Link for these RTX Kernel Awareness windows.

Copyright © 2012 ARM Ltd. All rights

13

STMicroelectronics Discovery STM32F407 Lab with ARM™ Keil™ MDK toolkit www.keil.com

reserved

15) Logic Analyzer Window: View variables real-time in a graphical format:
pVision has a graphical Logic Analyzer window. Up to four variables can be displayed in real-time using the Serial Wire
Viewer in the STM32. RTX Blinky uses four tasks to create the waveforms. We will graph these four waveforms.

1. Close the RTX Viewer windows. Stop the program Q and exit debug mode. @

2. Add 4 global variables unsigned int phasea through unsigned int phased to Blinky.c as shown here:

Add 2 lines to each of the four tasks Task1 through Task4 in Blinky.c as shown 25 fasmne T '
below: phasea=1; and phasea=0; :the first two lines are shown added at lines 084 30 unsigned int phasea=0:
and 087 (just after LED_On and L];D_Off function calls). For each of the four tasks, s Eﬁzigﬁzg o EEZ::};;E::
add the corresponding variable assignment statements phasea, phaseb, phasec and 33 unsigned int phased=0;
34 [/ *
phased' SSIT * Function 'sign:
- LOAD
4. Rebuild the project. Program the Flash ## 460/ - e
47 T + Task 1 'phaseld': Phase L ouwl
45 * J— S
5. Enter debug mode @ . 40 []__task void phasel (void] {
50 for {(;:) {
You can run the program at this point. S1 BS_evt_walt_and (0xOO0L, OxLILff);
5z LED On (LED 4);:
Open View/Analysis Windows and select Logic Analyzer or select the o rhasea=1;
Q 54 zignal fune (t_phaseE):
LA window on the toolbar. 33 LED_OLZ (LED_&)
56 phasea=0; G
Enter the Variables into the Logic Analyzer: g; } }

8. Click on the Blinky.c tab. Block phasea, click, hold and drag up to the
Logic Analyzer tab (don’t let go yet!)

9. When it opens, bring the mouse down anywhere into the Logic Analyzer window and release.

10. Repeat for phaseb, phasec and phased. These variables will be listed on the left side of the LA window as shown.
Now we have to adjust the scaling.

TIP: If you can’t get these variables entered into the LA, make sure the Trace Config is set correctly. The Serial Wire Viewer
must be configured in order to enter variables in the LA.

The Logic Analyzer can display static and global variables, structures and arrays.
It can’t see locals: just make them static. To see peripheral registers read or write to them and enter them in the LA.
11. Click on the Setup icon and click on each of the four variables and set Max. in the Display Range: to 0x3.
12. Click on Close to go back to the LA window.
13. Using the All, OUT and In buttons set the range to 1 second or so. Move the scrolling bar to the far right if needed.

Logic Analyzer o x

Setup .. I Load .. in Time tax Time Grid Zoom Code Trace Setup Min/kax Update Screen| Trangition

‘Save |57U4752US|45000073 | 23 --- | Shnw ‘Shnw” Auto H Undo | | Slnp ‘ P[EVE
T

V¥ Signallnfa W Amplitude
v Show C_uc\es |7 Cursar

g —_——

phasea

of [1] Inid:D j |_1 |_1 [|_1 f |_1 f M
5 3 P | : : : : : : :
i L o S S I S N R
" ol [|.-_|| 3 3 ‘ : : : : : : : [
g 3 o i ! i i : ’ ’ ’ ’ ’ ’ ’
% ey L L . I
= 3 H phasec
b3 : Mouse Pos Reference Point Delta
2 ! Time: 1464507 5 0s 14645807 s = 0.0682638 Hz
= i : Value: 1 0 1 : : : : o
15.40807 5 [T S/ [' ' | 47.40807 5
2558555639 130075600, o 130875600 527R555699 7964555639

|

Ll
@Di:a:siml)\;‘ | S Logic Analyzer

14. Select Signal Info and Show Cycles. Click to mark a place move the cursor to get timings. Place the cursor on one
of the waveforms and get timing and other information as shown in the inserted box labeled phasec:

TIP: You can also enter these variables into the Watch and Memory windows to display and change them in real-time.

TIP: You can view signals that exist mathematically in a variable and not available for measuring in the outside world.

14 Copyright © 2012 ARM Ltd. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com

16) ITM (Instruction Trace Macrocell) This example uses a ST-Link V2 or ULINK2.

Recall that we showed you can display information about the RTOS in real-time using the RTX Viewer. This is done through
ITM Stimulus Port 31. ITM Port 0 is available for a printf type of instrumentation that requires minimal user code. After the
write to the ITM port, zero CPU cycles are required to get the data out of the processor and into pVision for display in its
Debug (printf) Viewer window. Note: the global variable value from 10) Watch and Memory Windows ... must be entered
and compiled in Blinky.c in order for this exercise to work.

1. Stop the program if it is running and exit Debug mode.
2. Open the project C:\Kei\ARM\Boards\ST\STM32F4-Discovery\Blinky\Blinky.uvproj (do not use RTX Blinky).

3. Add this code to Blinky.c. A good place is near line 19, just after the #include "LED.h".
#define 1TM_Port8(n) (*((volatile unsigned char *)(0xEO0000000+4*n)))

4. In the main function in Blinky.c after the second Delay(200); near line 94 enter these lines:
ITM_Port8(0) = value + 0x30; /* displays value in ASCII */
while (ITM_Port8(0) == 0);
ITM_Port8(0) = 0x0D;
while (1TM_Port8(0) == 0);
ITM_Port8(0) = Ox0A;

5. Rebuild the source files, program the Flash memory and enter debug mode.

6. Open Select Target Options EN or ALT-F7 and select the Debug tab, and then the Trace tab.

7. Configure the Serial Wire Viewer as described on page 9. Use 53.76 MHz for the Core Clock.

8. Unselect On Data R/W Sample, EXCTRC and PC Sample. (this is to help not overload the SWO port)
9. Select ITM Port 0. ITM Stimulus Port “0” enables the Debug (prinftf) Viewer.

10. Click OK twice. Enter Debug mode.

11. Click on View/Serial Windows and select Debug (printf) Viewer and click on RUN.

12. In the Debug (printf) Viewer you will see the ASCII of value appear. Debug (printf) Viewer

13. As value is incremented its ASCII character is displayed, T———=

Trace Records

1. Open the Trace Records if not already open. Double click on it to clear it.

2. You will see a window such as the one below with ITM and Exception frames. = euild Output | 3 Debug (printf] Viewer
What Is This ?

1. You can see Exception 15 Entry, Exit, Return and the three ITM writes. You probably have to scroll down.

2. ITM 0 frames (Num column) are our ASCII characters from value with carriage return (0D) and line feed (0A) as
displayed the Data column.

All these are timestamped in both CPU cycles and time in seconds.

4. When you are done, stop the processor and exit debug mode.

ITM Conclusion =
. . . . Tipe [Ovi[Num| Addess | Dota [PC [Dy] Goes | Tmell Iﬂ
The writes to ITM Stimulus Port 0 are intrusive and are usually one m 0 ES [meas 147D
cycle. It takes no CPU cycles to get the data out the SAM4 i ' w e 3o
processor and to your PC via the Serial Wire Output pin. m 0 o Wkl 2477
. . . . ™ 0 0DH 315524855 4 421 32455
TIP: It is important to select as few options in the Trace i 2 i eiss 44
. ™ 0 0DH 315524554 4 421 32515
configuration as possible to avoid overloading the SWO pin. Enter m 0 i pe O i
only those features that you really need. i ; o e L
™ 0 33H 543624502 6.47172502
IT™ 1] 0DH 543624967 6.47172580
IT™ 0 0AH 543624967 6.47172580
™ 0 34H 627624368 747172581
™ 0 0DH 711624969 847172582 LI

Super TIP: ITM_SendChar is a useful function you can use to send
ITM characters. It is found in the header core.CM3.h.

15 Copyright © 2012 ARM Ltd. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com

17) Serial Wire Viewer (SWV) and how to use it:
1) Data Reads and Writes: (Note: Data Writes but not Reads are enabled in the current version of pVision).

You have already configured Serial Wire Viewer (SWV) on page 13 under RTX Viewer: Configuring the Serial Wire Viewer:

Now we will examine some of the features available to you. SWV works with pVision and ST-Link V2, ULINK2/ME,
ULINKpro or a Segger J-Link V6 or higher. SWV is included with MDK and no other equipment must be purchased.

Everything shown here is done without stealing any CPU cycles and is completely non-intrusive. Your program runs at full
speed and needs no code stubs or instrumentation software added to your source code. Screens are shown using a ST-Link.

1. Use RTX Blinky from the last exercise. Enter Debug mode and Run the program if not already running.

- }tv -
2. Select View/Trace/Records or click on the Trace icon E - and select Records. e
3. The Trace Records window will open up as shown here: Couneis
4. The ITM frames are the data from the RTX Kernel Viewer which uses Port 31 as shown under Num. here:
5. To turn this off, select Debug/Debug Settings and click on the Trace tab. Unselect ITM Stimulus Port 31.
TIP: Port 0 is used for Debug printf Viewer. N
CONET Tupe [Ow[Hum | Addess [Data | PC_ [Db| Cpces | Timels] |~
6. Unselect EXCTRC and Periodic. o o s e T
ITH N 0EH ® B3219 0.00o041202
ITH il FFH * 65219 0.00041202
7' SeleCt On Data R/W Sample' Data wirite 20000018H 00000001H #® E9219 o.0oo1202
. . ITH N 0EH 13450873 0.08006472
8. Click on OK twice to return. n : o oz oo
. . ITH N 0EH 84011548 050006874 5
9. Exit and re-enter Debug mode. (not with ULINK) I a FFH BTG OSI007OST
ITH A 0EH 9r450873 052006472
. . ITH N FFH 97451223 0 58006650
10. Click on the RUN icon. ITh a 02H 16010940 100006512
ITH A 03H 162011545 1.00008872
. . D ata 'wirite 2000001CH 00000001H 162011633 1.00006363
11. Double-click anywhere in the Trace records ITH k)l 0H ¥ 18805353 1.00003502
. . ITH A FFH #® 162015963 1.00009502
window to clear it. ITM 31 0EH 181450873 1 DA006A72
ITH kil FFH 181451223 1.08006680
. . ITH N 03H 2652011032 150006567
12. Only Data Writes will appear now. ITH 3 oM TG0 1500GH | |
Ed
. . . Type [Of[Mum [Addess | Data | PC_ [Diy| Cycles | Timels] -
TIP: You could have right clicked on the Trace Records Dot Viis J00000CH 00000000H CB000TCAH . 000000002
window to filter the ITM frames out. Unselecting a feature |pZ:4m J000ICH 00000000 0800075EM s 020
. . . Data Write 2000001CH 000D000TH 08000754H 84003934 150017739
is better as it reduces SWO pin traffic and therefore trace Do Wi 2000001CH OODODDOOH OBODO7EEH 57443066 174017618
Data Write 2000001CH 000D00DTH 08000754H 168009934 300017739
overflows. Data Wiits 2000001CH 000D0ODOH 0BODO7BEH 181449866 324017618
Data Wit 2000001CH 000000DTH 08000754H 252009934 450017739
What iS happening here D) Dat: Wm: 2000001CH 000D00DOH 0800078EH 265445866 474017618
H — Data Wi 2000001CH 0000000 TH 08000754H 336009934 6.00017739
Dj: Wﬁ: 2000001CH 000DO0DOH 0800078EH 345445866 624017618
. : . Data Wi 2000001CH 0000000 TH 08000754H 420003934 7.50017739
1. When variables are entered in the Logic Analyzer Da Wie 2000001CH 0OODDDOH 0BDDD7BEH 433443866 774017618
(remember phasea ?), the reads and/or writes will e Vime Z000CH 00000000H 020007EH Sasess sa0i
: iata Wit I 7 7
. > Dat: Wm: 2000001CH 000D000TH 08000754H 588009934 10.50017739
appear in Trace Records. Data Wite 2000001CH 0ODDODOOH 0BOOOTBEH 601449866 1074017618
Data Write 2000001CH 000D00DTH 08000754H 672009534 12.0001773%
. . Data Wi 2000001CH 00000000H 0800078EH 6854453866 1224017618
2. The Address column shows where the variable is Di: w:tt: 2000001CH 000D0DDTH 08000754H 756009934 1350017739 il
located. Symbcrls X
3. The Data column displays the data values written Module / Name Location s
to phasea. ¥ 7t% SRC/CM/r_Time.c Module |
4. PC is the address of the instruction causing the 2 2252:::—:“:“ ::":“:E
. . . . JCM/rt_Task.c odule
writes. You activated it by selecting On Data R/W —
Sample in the Trace configuration window. 0x20000018 m
. 0x2000001C unsigned int
5. The Cycles and Time(s) columns are when these Sl AY
0x20000020 unsigned int J
events happened. 0x20000024 W
TIP: You can have up to four variables in the Logic % S T
. . X, —
Analyzer and subsequently displayed in the Trace Records 020000030 051D
WlndOW. 0x20000054 05 TID LI

TIP: If you select View/Symbol Window you can see where the addresses of the variables are. Yours might be different.
Note: You must have Browser Information selected in the Options for Target/Output tab to use the Symbol Browser.

TIP: ULINKpro and Segger J-Link adapters display the trace frames in a slightly different style trace window.

16 Copyright © 2012 ARM Ltd. All rights reserved

®

STMicroelectronics Discovery STM32F407 Lab with ARM™ Keil™ MDK toolkit www.keil.com

2) Exceptions and Interrupts:

The STM32 family using the Cortex-M4 processor has many interrupts and it can be difficult to determine when they are
being activated and how often. Serial Wire Viewer (SWV) on the STM32 family makes this task easy.

1. Stop the RTX Blinky example program. Be in Debug mode. Open Debug/Debug Settings and select the Trace tab.

Select EXCTRC as shown here:

Click OK twice.

Double click on Trace Records to clear it.
Exit and re-enter Debug mode. (not ULINK)
Click RUN to start the program.

A G o o

You will see a window similar to the one
below with Exceptions frames displayed.

What Is Happening ?
1. You can see two exceptions happening.
= Entry: when the exception enters.

= Exit: When it exits or returns.

Unselect On Data R/W Sample, PC Sample and ITM Ports 31 and 0. (this is to minimize overloading the SWO port)

= Return: When all the exceptions have returned
to the main program. This is useful to detect tail-
chaining.

2. Num 11 is SVCall from the RTX calls.
Num 15 is the Systick timer.

In my example you can see one data write from
the Logic Analyzer.

Note everything is timestamped.

6. The “X” in Ovfis an overflow and some data was
lost. The “X” in Dly means the timestamps are

delayed because too much information is being
fed out the SWO pin. Always limit the SWV
features to only those you really need.

TIP: The SWO pin is one pin on the Cortex-M4 family
processors that all SWV information is fed out. There are
limitations on how much information we can feed out this
one pin. These exceptions are happening at a very fast
rate. pVision easily recovers gracefully from these
overflows. Overflows are shown when they happen.
Using a ULINKpro helps reduce overruns.

Cortex-M Target Driver Setup x|
Debug Trace I
Core C\ock:l TE2.000000 MHz ¥ | Tirace Enatils
Trace Pot—————— [~ Timestamp: Trace Event
Serial Wire Output - UART ANRZ j ’7 ¥ Enable Prescaler: |1 - [~ CPI: Cpcles per Instruction
SWO Clock Frescaler: m PC Sarmpling [~ EXC: Exception overhead
% Autodstet [~ SLEEP: Slesp Cpcles
utodetec P I ;I B)
ST] 102415 [LSU: Load Store Urit Cycles
SO 4 MHz | | [Paiodc Peiod: [<Disableds | | I FOLD: Falded Instructions
™ onData RAW Sample ¥ EXCTRC: Exception Tracing
~ ITM Shimulus Port:
il Part 24 23 Part 16 15 Part g 7 Port 0
Enable: |l:7FFFFFFE MWV WVVVY MMMV VMMV RV
PFiivilege: IDxUUUUUUUS Port 31.24 v Port 2316 [Pot15.8 [T Port7.0 [
—Advanced setting
™ Ignore packets with na SYHC
I~ Owenarits CYCCNT
QK I Cancel | Lapply |
X
T Ovi | Num | Addess | Data | PC_ [Dy| Goes [Tmey |-l
Exception Entry 15 3645281162 6509430646
Exception Exit 15 3645281343 65.09430970
Exception Retum o 3645281351 6509430984 4
Exception Entry 15 3646561162 6512430646
Exception Exit 15 3646961336 6512430857
Exception Retum 0 3646561344 £5.12430571
Exception Entry 15 3648641162 £5.15430646
Exception Exit 15 3648641520 65.15431286
Exception Retum o 3648641528 65.15431300
Data Write 2000001CH 00000000H X 3648643664 £5.15435114
Exception Retum X o X 3648643664 £5.15435114
Exception Entry 15 3650321163 £5.18430643
Exception Exit 15 3650321397 65.18431066
Exception Retum o 3650321405 65.18431080
Exception Entry 15 3652001162 65.21430646
Exception Exit 15 3652001407 65.21431084
Exception Retum 0 3652001415 65.21431038
Exception Entry 15 3653681162 65.24430646
Exception Exit 15 3653681343 65.24430970
Exception Retum o 3653681351 65.24430984 ;I
x
Mum | Name [Count [TotalTime | Min Time In | Mas Time In | Min Time Dut | Max Time Dut | Fist Time[s] | Last Time[s] | =]
3 HardF ault o Os
4 Membanage I 0s J
5 BusFault o Os
I UsageFault] 0s
7 o Os
8 o Os
9 o Os
10 o Os
Il SWLCal 34 8338 us 8338 us 8338 us BO512 us 16.000 s 000005801 1600012286
12 DbgMon i 3
13 o Os
14 Pend5Y 1] Os
15 SpsTick 1604 2248 ms 1.250 us 335us 9.997 ms 9.993 ms 0.01006304 1604006300
18 ExiRQ 0 o 3
17 ExtiRG 1 o s
18 ExtiRO 2 o s
19 EMIROE 0 0s =l

1. Select View/Trace/Exceptions or click on the Trace icon and select Exceptions.

2. The next window opens up and more information about the exceptions is displayed as shown below:

3. Note the number of times these have happened under Count. This is very useful information in case interrupts come

too fast or slow.

ExtIRQ are the peripheral interrupts.

You can clear this trace window by double-clicking on it.

6. All this information is displayed in real-time and without stealing any CPU cycles or stubs in your code !

TIP: Num is the exception number: RESET is 1. External interrupts (ExtIRQ), which are normally attached to peripherals,
start at Num 16. For example, Num 41 is also known as 41-16 = External IRQ 25. Num 16 =16 — 16 = ExtIRQ 0.

STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit

17

Copyright © 2012 ARM Ltd. All rights reserved

www.keil.com

3) PC Samples:

Serial Wire Viewer can display a sampling of the program counter.

SWV can display at best every 64™ instruction but usually every 16,384 is more common. It is best to keep this number as
high as possible to avoid overloading the Serial Wire Output (SWO) pin. This is easily set in the Trace configuration.

1. Open Debug/Debug Settings and select the Trace tab.
2. Unselect EXCTRC, On Data R/W Sample and select Periodic in the PC Sampling area.
3. Click on OK twice to return to the main screen.
. . Trace Records x
4. Close the Exception Trace window race Records x|
Type | Ol | Mum | Address | Data | FC | Dl_l,ll Cycles | Time(s -
and leave Trace ReCOI'dS Open' PLC Sample 03000554H 1 0.00000007 :I
Double-click to clear. PC Sample 08000554H 16385 000009753
PC Sample 020005524H 32763 0.000719505
. : . PC Sample 02000554H 49153 0.00029258
5. Click on RUN and this window FC Sample 0800055AH E5537 000035010
opens: PL Sample 08000554H 81921 0.00048762
PC Sample 020005524H 93305 0.00058515
3 PC Sample 02000554H 114689 0.000B8267
6. Most of the PC Samples in the PC Sample 08000554H 131073 0.00073020
PLC Sample 03000554H 147457 0.00087772
exa.mpl.e Shown are 0X0040—05E2 PC Sample 020005524H 163841 0.00097524
which is a branch to itself in a 100p PC Sample 08000554H 180225 0.00107277
. PLC Sample 03000554H 196609 0.00117029
f()reVeI' routine. PLC Sample 03000554H 212933 0.00126782
. PC Sample 020005524H 229377 0.00736534
Note: the exact address you get PC Sample 02000554H 245761 0.001 46286
PLC Sample 03000554H 262145 0.00156039
depen.ds on the source COde and the PLC Sample 03000554H 278529 0.00165791
compller settlngs. PC Sample 0B000554H 234913 0.00175543
PC Sample 02000554H 31297 0.00185296 LI
7. Stop the program and the
Disassembly window will show this Branch as shown below:
8. Not all the PCs will be captured. Still, PC Samples can give you some idea of where your program is; especially if it
is not caught in a tight loop like in this case.
9. Set a breakpoint in one of the tasks.]
154: /* This function is ecalled when the user timer has expired. Parameter *
. 155: /7 'info' holds the value, defined when the timer was created. L
10. Run the program and when the breakpoint ise:
. . . 187: /* HERE: include optional user code to be executed on timeout. */
is hit, you might see another address at the oxaosovsEn Eron | HOP
. 0x004005E2 E7FE B Ox004005E2
bottom of the Trace Records window. See g, i
the screen below: i o
11. Scroll to the bottom of the Trace Records window and you might (probably not) see the correct PC value displayed.
Usually, it will be a different PC depending on when the sampling took place.
12. To see all the program counters you will need to use ETM instruction trace.
13. Remove the breakpoint.
dDisas;my :
116: /
117: * Task 4 'phaseD': Phase D output
118: *
119: rask void phaseD [void)
InUxUU‘IUUTa 2000 MOVS r0, #0x00
0x004007C4 4978 LDR ri, [pe, #4801 ; BOx004009A48
0x004007C6 6008 STR x0, [£1, #0x00]
_EIXDDqDDTCE E7E7 B Ox0040073 4
.
[) Avstracttet £ Binky.c x | [£ R Conf e | [F Levec |
033 Dsievtimaitiand (Ox0001, Oxffff); J* wait for an event flag OxQ001 L74
ESS :Zi:_;uié {6y [Tme [Ovi] Num | Addess | Daa | FC__ [D] Cudes | Timels] |=|
037 LED_Off (LED_E) ; PL Sample 004005E 2H 86948301153 1368 56720561
098 phaseh = O: PL Sample 004005 2H BE948317543 1358.56746161
PC Sample 004005E 2H BR34B8333927 1358.56771761
PL Sample 004005 2H 86948350311 1358.56797361
PL Sample 004005 2H BEI483EEE9T 135856822961
PL Sample 004005E 2H 86948383079 1368 56848561
- | PC Sample 004005 2H BE948399463 1358.56874161
PC Sample 004005E 2H BR348415847 1358.56839761
PL Sample 004005 2H 86948432231 1358.56925361
105 task void phaseC | PL Sample 004005 2H BE948448615 135856950961
108 “for () ¢ PL Sample 004005E 2H 86948464399 1368 56976561
o N PL Sample 004005 2H 86948481383 1358.57002161
17 03_evt_vaic_and | pe Sams\e 004005E2H 6348497767 1358.57027761
108 LED_On (LED_C); PL Sample 004005E 2H 86948514151 1358.57053361
108 phasec = 1; PC Sample 004005E 2H 26948530535 135857078961
110 signal func (t_p |PCSample 004005E 2H 86948646319 136857104561
111 LED OfE(LED CJ,T PL Sample 004005 2H BE948563303 1358.57130161
112 phagac = El;_ PC Sample 004005E 2H BRI4E5TIEET 1358.57155761
13 ' PL Sample 004005E 2H 86948536071 1358.57181361
N PC Sample 00400F72H BE948612455 1358.57206961 j
15 -
1160 /+
17 * Task 4 'phaseD': Phase D output
gL = v
18 Copyright © 2012 ARM Ltd. All rights reserved

STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com

18) Serial Wire Viewer (SWV) Configuration window: (for reference)

The essential place to configure the trace is in the Trace tab as shown below. You cannot set SWV globally for pVision. You
must configure SWV for every project and additionally for every target settings within a project you want to use SWV. This
configuration information will be saved in the project. There are two ways to access this menu:

A.

1)

2)

3)
4)

5)

6)

7)

In Edit mode: Select Target Options &N or ALT-F7 and select the Debug tab. Select Settings: on the right side of
this window and then the Trace tab. Edit mode is selected by default when you start uVision.

In Debug mode: Select Debug/Debug Settings and then select the Trace tab. Debug mode is selected with @ .

Core Clock: The CPU clock speed for
SWV. The CPU speed can be found in

Debug Trace | Flazh Downloadl

Cortex-M Target Driver Setup

x|

your startup code or in Abstract.txt. It is
usually Called SYSCLK or Main Clock‘ 1 Core Cluck.l 54.000000 mMHz 2 ¥ Trace Enable
This must be set correctly for all 3 Trace Pat Vi Trace Events
adapters eXCCpt ULINKprO ISeriaI ‘wiire Output - UART MMRZ j ¥ Enable Prescaler: I‘I VI o EPI:.EycIes |:.|er Inztruction
. 5w Clock Prescaler l? X [T EXC: Exception overhead
Trace Enable: Enables SWV and ITM. el Seing I SLEEF: Sleep Cycles
. . IV Autodetect aPrescaIer:|1D24"1B VI . ’
It can only be changed in Edit mode. w0 sk [TT6 M |y I~ L5U: Load Store Unit Cycles
. g . Periodic Period:l <Disabled: [~ FOLD: Folded Instructions
Thi not affect th atch an
M S dOCS .Od e(ci. lew 3 t d [™ onData AW Sample [EXCTRC: Exception Tracing
emory window display updates.
.. . —ITM Stirmulus Part a b
Trace Port: This is preset for ST-Link. 6 31 Pot 2423 Pot 1615 Pt 8 7 Fat O
.] . Enable: |0xFFFFFFFF Fiviviviviviviv vivivivivivivly [viviviviviviviy [vIivivivivivivive
Timestamps: Enables timestamps and Privilege: [0+00000008 Pot31.24 ¥ Pat23.16 [Port 15.8 I~ Poit7.0 ™
selects the Prescaler. 1 is the default.
PC Sampling: Samples the program

Cancel I

counter. Lo ||

a. Prescaler 1024*16 (the default) means every 16,384™ PC is displayed. The rest are not collected.
b. Periodic: Enables PC Sampling.

c. On Data R/W Sample: Displays the address of the instruction that caused a data read or write of a variable
listed in the Logic Analyzer. This is not connected with PC Sampling but rather with data tracing.

ITM Stimulus Ports: Enables the thirty-two 32 bit registers used to output data in a printf type statement to
pVision. Port 31 (a) is used for the Keil RTX Viewer which is a real-time kernel awareness window. Port 0 (b) is
used for the Debug (printf) Viewer. The rest are currently unused in pVision.

e Enable: Displays a 32 bit hex number indicating which ports are enabled.
e Privilege: Privilege is used by an RTOS to specify which ITM ports can be used by a user program.

Trace Events: Enables various CPU counters. All except EXCTRC are 8 bit counters. Each counter is cumulative
and an event is created when this counter overflows every 256 cycles. These values are displayed in the Counter
window. The event created when a counter wraps around is displayed in the Instruction Trace window.

a. CPI: Cycles per Instruction: The cumulative number of extra cycles used by each instruction beyond the
first, one including any instruction fetch stalls.

b. Fold: Cumulative number of folded instructions. These results from a predicted branch instruction where
unused instructions are removed (flushed) from the pipeline giving a zero cycle execution time.

c. Sleep: Cumulative number of cycles the CPU is in sleep mode. Uses FCLK for timing.

d. EXC: Cumulative cycles CPU spent in exception overhead not including total time spent processing the
exception code. Includes stack operations and returns.

e. LSU: Cumulative number of cycles spent in load/store operations beyond the first cycle.

EXCTRC: Exception Trace. This is different than the other items in this section. This enables the display
of exceptions in the Instruction Trace and Exception windows. It is not a counter. This is a very useful
feature to display exception events and is often used in debugging.

TIP: Counters will increment while single stepping. This can provide some very useful information. You can read these
counters with your program as they are memory mapped.

STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit

19

Copyright © 2012 ARM Ltd. All rights reserved

www.keil.com

19) DSP SINE example using ARM CMSIS-DSP Libraries:

ARM CMSIS-DSP libraries are offered for ARM Cortex-M3 and Cortex-M4 processors. DSP libraries are provided in MDK
in C:\KeilARM\CMSIS. README.txt describes the location of various CMSIS components. See www.arm.com/cmsis and
www.onarm.com/cmsis/download/ for more information. CMSIS is an acronym for Cortex Microcontroller Software
Interface Standard.

This example creates a sine wave with noise added, and then the noise is filtered out. The waveform in each step is displayed
in the Logic Analyzer using Serial Wire Viewer.

This example incorporates Keil RTX RTOS. RTX is available free with a BSD type license. RTX source code is provided.
To obtain this example file, go to www.keil.com/appnotes/docs/apnt 230.asp Extract DSP to \STM32F4-Discovery\.
1. Open the project file sine: C:\Kei\ARM\Boards\ST\STM32F4-Discovery\DSP\sine.uvproj

2. Build the files. There will be no errors or warnings.

LOAD

3. Program the STM32 flash by clicking on the Load icon: ¥# Progress will be indicated in the Output Window.

4. Enter Debug mode by clicking on the Debug icon. @ Select OK if the Evaluation Mode box appears.

Click on the RUN icon. Open the Logic Analyzer window. !

6. Four waveforms will be displayed in the Logic Analyzer using the Serial Wire Viewer as shown below. Adjust
Zoom Out for an appropriate display. Displayed are 4 global variables: sine, noise, disturbed and filtered.

TIP: If one variable shows no waveform, disable the ITM Stimulus Port 31 in the Trace Config window.

7. The project provided has Serial Wire Viewer configured and the Logic Analyzer loaded with the four variables.

Min Time Max Time Grid Zoom Code Trace Setup Min/Max Update Screen| Transition I SignalIfo [~ Ampitude
| Auto || Undo |

Save _||[0B4%623s (82717395 | 025 ([|[out|[AN] [5huw ||| Show | [Stop |

[~ Show Cycles [~ Cursor

disturke

20768
_ 32767
=
=
32768 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ : ‘
7920739s ‘ ‘ ‘ ‘ ‘ ‘ oB100739s ‘ ‘ ‘ ‘ ‘ ‘ ‘ 325377351739
B |

@Disassemhly | ﬂ Logic Analyzer

8. Open the Trace Records window and the Data Writes to the four variables are listed as shown here:

9. Leave the program running. |
10. Close the Trace Records window. | Type [Ovi[Mum[Addess | Data [PC__ [Dy| Gyoles [Tmei) =]
Data Wiite 20000000H 2C20H 00400252H 9741265867 101.47151945
. ; ‘o di Data Write 20000002H FOSH D04D0280H X 5741274850 10147161302
TIP: The ULINKpro trace d1sp lay 18 dlffere'nt Data Wiite X 20000006H Fa26H DD4D02CEH X 9741274850 101.47161302
and the program must be stopped to update it. Data Wiite 20000000H 2EF4H 00400252H 9741745582 101.47651648
Data Wiite 20000002H FECBH 00400280H X 9741754550 10147660990
: : : Data Wiite X 20000006H F&FFH DD4D02CEH X 9741754550 101.476609%0
Th? Watch 1 W_mdqw will fihsplay the four Data Wrie 20000000H 318CH D0400252H 9742225305 101.4B151359
Varlables u datln 1n real time as Shown Data Write 20000002H FC15H D0400280H X 57427234332 101.48160762
p g Data Wiite X 20000006H FAEZH DD4D02CEH X 9742234332 101.48160762
below: Data Write 20000000H 33F1H 00400252H 9742705028 101.48651071
Data Wiite 20000002H 02COH D0400280H X 5742714032 10148660450
Data Wiite X 20000006H FECBH DD4D02CEH X 9742714032 107.48660450
Data Write 20000000H 3621H 00400252H 9743124839 101.49150874
Data Wiite 20000002H 0927H D0400280H X 5743193814 10149160223
Data Witte X 20000006H 0287H DD4D02CEH X 9743193814 101.49160223
Data Wiite 20000000H 381AH 00400252H 9743664482 101.49650502
Data Wiite 20000002H DEASH D0400280H X 5743673432 10149659825
Data Write X 20000006H 06A2H DD4D02CEH X 9743673432 101.49659825
<Ent) Data Wiite 20000000H 33DAH 00400252H 9744144157 101.50150205
Enter expression= Data Write 20000002H 12BAH 00400280H X §744153214 10150158588 |
20 Copyright © 2012 ARM Ltd. All rights reserved

®

STMicroelectronics Discovery STM32F407 Lab with ARM™ Keil™ MDK toolkit www.keil.com

Signal Timings in Logic Analyzer (LA):
1. Inthe LA window, select Signal Info, Show Cycles, Amplitude and Cursor.
2. Click on STOP in the Update Screen box. You could also stop the program but leave it running in this case.
3. Click somewhere in the LA to set a reference cursor line.
4. Note as you move the cursor various timing information is displayed as shown below:
| Logic Analyzer
ISe'tup | Load ... Min Time Max Time Girid Zoom Code Trace Setup Min/Max Update Screen| Transition ¥ Signal Info ¥ Ampltude
Save ... | Os |19.55i]‘|55 | 05s EI | Show | |Show || Auto || Undo | | Start | ¥ Show Cycles W Cursor
20000 | : 5 : : :
o : : : :
=
-20000
o 7000
0
2
7000
B 32767
£
=]
ki S
= 32768 :
disturbed H |
B 32767 Mouse Pas Reference Point Delta
b= Time: 14,25515 s 12.73011 s 1.525042 5 = 0.65572 Hz[! :
= Value: -21260 19509 40769 : -
S PCS: N/A /A : :
11.94515 5 1273011 (4255155, d. 1.525042 5] 10995158 1954515 s
1146734372 1222090333 1368494372, d: 146404039]530734372 1914734372
A |+
@Disassembly ﬂLogicAnalyzer

RTX Tasks and System:

Click on Start in the Update Screen box to resume the collection of data.

Open Debug/OS Support and select RTX Tasks and System. A window similar to below opens up. You probably

Note this window does not update: nearly all the processor time is spent in the idle daemon: it shows it is Running.

6.
have to click on its header and drag it into the middle of the screen.

7.
The processor spends relatively little time in other tasks. You will see this illustrated clearly on the next page.
Set a breakpoint in one of the tasks in DirtyFilter.c by clicking in the left margin on a grey area.

9. Click on Run and the program will stop here and the Task window will be updated accordingly. Here, I set a
breakpoint in the noise _gen task:

10. Clearly you can see that noise_gen was running when the breakpoint was activated.

11. Remove the breakpoint.

Property Value
TIP: You can set hardware breakpoints while the m

program is running.

RTX Tasks and System X

Timer Number: 0

Tick Timer: 10,000 mSec

Round Robin Timeout:

Stack Size:

TIP: Recall this window uses the CoreSight DAP
read and write technology to update this window.
Serial Wire Viewer is not used and is not required
to be activated for this window to display and be
updated.

The Event Viewer does use SWV and this is
demonstrated on the next page.

Tasks with User-provided Stack:

Stack Overflow Check:

Task Usage: Available: 7, Used: 5
User Timers: Available: 0, Used: 0
[2-Tasks Mame Priority State Delay Event Value Event Mask Stack Load
255 | os_idle_demon 0
[sync_tsk 1 ‘Wait_DLY 1 32%
5 filter_tsk 1 Wait_AND 00000 0x0001 32%
4 disturb_gen 1 ‘Wait_AND 00000 0x0001 32%
3 noise_gen 1 00000 0x0001
2 sine_gen 1 Wait_AND 00000 0x0001 32%

®

21

STMicroelectronics Discovery STM32F407 Lab with ARM™ Keil™ MDK toolkit

www.keil.com

Copyright © 2012 ARM Ltd. All rights reserved

Event Viewer:

1. Stop the program. Click on Setup... in the Logic Analyzer. Select Kill All to remove all variables. This is necessary
because the SWO pin will likely be overloaded when the Event Viewer is opened up. Inaccuracies might occur. If
you like — you can leave the LA loaded with the four variables to see what the Event Viewer will look like.

2. Select Debug/Debug

Settlngs. Load... || MinTime Max Time Grid Zoom Code | Trace | Update Screen | Transition |— Cursor sk
3. Click on the Trace tab Save... ||| 0-9701535 [55.55008 5 | wms |[1n ||om{ Al | Show | show || stop | Clear | revl Next] | show Cydes

to collect its information.
sine_gen (2)

5. Click OK twice.
6. Click on RUN.

7. Open Debug/OS Support dstub_gen (4)
and select Event Viewer. |
The window here opens up:

noise_gen {3}

* fiter_tsk (5)

8. Note there is no Task 1 [|
listed. Task 1 is main_tsk : ; i i i i i i i
and is found in DirtyFilter.c Idle (255) _
near line 208. It runs some 5548935 ' ‘ ' sssoazs ' ' ' ' " 555993s
RTX initialization code at A Ao
the beginning and then deletes itself with os_tsk delete self(); found near line 195.

4. Enable ITM Stimulus Port ~ a7asks mx X)({255})(X X X x X j(mg
31. Event Viewer uses this A
R
| I | I |

| | | |

| | | |

| | | |

TIP: If Event Viewer is blank or erratic, or the LA variables are not displaying or blank: this is likely because the Serial Wire
Output pin is overloaded and dropping trace frames. Solutions are to delete some or all of the variables in the Logic Analyzer
to free up some bandwidth.

ULINKpro is much better with SWO bandwidth issues. These have been able to display both the Event and LA windows.
ULINKpro uses the faster Manchester format than the slower UART mode that ST-Link, ULINK?2 and J-Link uses.

ULINKQpro can also use the 4 bit Trace Port for faster operation for SWV. The Trace Port is mandatory for ETM trace.

9. Note on the Y axis each of the 5 running tasks plus the idle daemon. Each bar is an active task and shows you what
task is running, when and for how long.

10. Click Stop in the Update Screen box.

11. Click on Zoom In so three or four tasks are displayed.

12. Select Cursor. Position the cursor over one set of bars and click once. A red line is set here:
13. Move your cursor to the right over the next set and total time and difference are displayed.

14. Note, since you enabled Show Cycles, the total cycles and difference is also shown.

The 10 msec shown is the SysTick timer value.

Load... Min Time Max Time Grid Zoom Code | Trace Update Screen | Transition ¥ Cursor " sk info
This value is set in RTX Conf CM.c. The next Sove... | [o-752535 ms [2499017 s [zms [n flou] an || show || show | mﬁl HI'&I IV show Cyces
_ _ : — . - -
page describes how to change this. 2 i i i i i i : >< :
s Idle (255) ; idle (255) ; ; e (255) E E E E ;
= 8 8 8 8 8 8 8 8 8 8 8
: : : 7 : : l—‘ld:la §
3 !
g
TIP: ITM Port 31enables sending the Event s

Viewer frames out the SWO port. Disabling this
can save bandwidth on the SWO port if you are not
using the Event Viewer and this is normally a good
idea if you are running RTX.

In MDK 4.54, enabling Port 31 might disable one
of the four LA variables. This is reported to be

c ts.. filter tsk ... disturb... nois

Idle [2.. syn

fixed in MDK 4.60.
: : : . . . L , : : ;
24964685 ; 24 99268 5
IS ety 3 2399097017
il »

22 Copyright © 2012 ARM Ltd. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com

Event Viewer Timing:
1. Click on Zoom In until one set of tasks is visible as shown below:
2. Enable Task Info (as well as Cursor and Show Cycles from the previous exercise).
3. Note one entire sequence is shown. This screen is taken with ST-Link with LA cleared of variables.
4. Click on a task to set the cursor and move it to the end. The time difference is noted. The Task Info box will appear.

TIP: If the Event Viewer does not display correctly, the display of the variables in the Logic Analyzer window might be
overloading the SWO pin. In this case, stop the program and delete all variables (Kill All) and click on Run.

The Event Viewer can give you a good idea if your RTOS is configured correctly and running in the right sequence.

Load... ” Min Time Max Time Grid Zoom Code | Trace | UpdateScreen | Transion |5 o co ¥ Task Info
Save... I‘ ‘7-731256 msl 4.34486 5 ‘ 0.1ms E Out| All I Show ShowJ Start I C\earl Prev Nextl ¥ Show Cydes
All Tasks Idle (255 Wl *(2) ‘Xwa (255)
- —|[sine_gen (4ldisturb_gen (3)4]|
S T B
disturb_gen (3)
noise_gen (4)
sine_gen (5)
sync_tsk (8) ' [sine_gen B Min Max Average Called
- : : : : : : [0:080002f1) 40.71429 us 0.105 ms 0.104571 ms 436
- - - - L | time: Mause Pos Reference Point
L3R _ | : : S A
43139255 431456154 314675 5, d: 0114 ms 43158255
- 30197473 (0201925 (30202723, d: 98] 302‘"77“3
“ v

SysTick Timer Changing:

Stop the processor Q and exit debug mode. @

2. Open the file RTX Conf CM.c from the Project window. You can also select File/Open in
C:\Kei\ARM\Boards\ST\STM32F4-Discovery\DSP.

3. Select the Configuration Wizard tab at the bottom of the window. See page 12 for an explanation on how the Wizard
works. RTX_Conf_STM32F4.c* r DirtyFilter.c r_E

Bpand Al | Collapse Al | Help

4. This window opens up. Expand SysTick Timer Configuration.

5. Note the Timer tick value is 10,000 usec or 10 msec.
6. Change this value to 20,000. Optien | Value

’ ---Task Configuration
TIP: The 5,376,000 is the CPU speed. The Discovery board has a 8 MHz =)--SysTick Timer Configuration
crystal. This program was designed for 168 MHz with a 25 MHZ crystal. | LTimer dock value [Hz] 53760000
Therefore it runs 8/25 slower than designed for. The PLL is configured in Timer tick value [us] 10000

CMSIS file system_stm32f4xx.c and is easily modified. - System Configuration

7. Rebuild the source files and program the Flash.

Enter debug mode @ and click on RUN .

When you check the timing of the tasks in the Event Viewer window as you did on the previous page, they will now
be spaced at 20 msec.

TIP: The SysTick is a dedicated timer on Cortex-M processors that is used to switch tasks in an RTOS. It does this by
generating an exception 15. You can view these exceptions in the Trace Records window by enabling EXCTRC in the Trace
Configuration window.

1. Set the SysTick timer back to 10,000. You will need to recompile the source files and reprogram the Flash.
This ends the exercises. Thank you !

Next is how to make a new project from scratch (almost scratch) and Keil product and contact information.

23 Copyright © 2012 ARM Ltd. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com

20) Creating your own project from scratch: Using the Blinky source files:

All examples provided by Keil are pre-configured. All you have to do is compile them. You can use them as a starting point
for your own projects. However, we will start this example project from the beginning to illustrate how easy this process is.
We will use the existing source code files so you will not have to type them in. Once you have the new project configured;
you can build, load and run a bare Blinky example. It has an empty main() function so it does not do much. However, the
processor startup sequences are present and you can easily add your own source code and/or files. You can use this process to
create any new project, including one using an RTOS. This is for a STM32 processor and can be used for a Cortex-M4.

Create a new project called Mytest:

1. With pVision running and not in debug mode, select Project/New pVision Project...
2. In the window Create New Project that opens, go to the folder C:\Kei\ARM\Boards\ST\STM32F4-Discovery.

Create a new folder and name your project:

3. Right click inside this window and create a new folder by selecting New/Folder. I named this new folder FAE.
4. Double-click on the newly created folder “FAE” to enter this folder. It will be empty.
5. Name your project in the File name: box. I called mine Mytest. You can choose your own name but you will have to

keep track of it. This window is shown here:
6. Click on Save.
Select your processor:

7. The Select Device for “Target 1” opens up as

shown at the bottom of this page:

8. This is the Keil Device Database”™ which lists
all the devices Keil supports. You can create
your own if desired for processors not released
yet.

9. Locate the ST directory, open it and select a
STM32F415ZG (or the device you are using).
Note the device features are displayed.
Select OK.
pVision will configure itself to this device.
Select the startup file:

11. A window opens up asking if you want to

10.

(% Create New Project =
‘9()v‘ ~ Keil ~ ARM ~ Boards ~ ST ~ STM32F4-Discovery ~ FAE [t [[search Fae ¥
Orgarize ~ New folder = - @

ST 2l Name - | oate modifiec | rvpe | size
CQ-STARM2
EK-STM32F No items match your search.
STM32-Discovery
STM32FO0-Discovery
STM32F4-Discovery
STM32F4Discovery _|
STM32F4-Discovery
STM32L 152-EVAL
STM32L Discavery
STM3210C-EVAL
STM32206-EVAL
STM3240G-EVAL
smzziooeEvar =] 4 | |
File name: [MyTest =
Save as type: [Project Files (*.uvpro) |

v

insert the default STM32 startup file to your project. Click on “Yes”. This will save you some time.

12.
clicking on the “+” beside each folder.
13.

startup_stm32f4xx.s and using the STM32F4 processor you chose.

In the Project Workspace in the upper left hand of uVision, expand the folders Target 1 and Source Group 1 by

We have now created a project called Mytest with the target hardware called Target 1 with one source assembly file

TIP: You can create more target hardware configurations and easily select them. This can include multiple Options settings,
simulation and RAM operations. See Projects/Manage/Components

Rename the Project names for convenience:
14. Click once on the name “Target 1” (or twice if

select Device for Target ‘Target 1°...

crU |

x|

not already highlighted) in the Project Vendor: - SThicroelectronics
. Device: STM32F4152G
Workspace and rename Target 1 to something ool
oolset: ARM
else. I chose STM32F4 Flash. Press Enter to »
. . Data base Description:
accept this change. Note the Target selector in T e 3| [Ge —
1 191 1 - ARM 32-bit Cortexc-M4 CP L with FPU
the main uVision window also changes to ____g STMIZFA15RG e e N
STM32F4 Flash ThlS iS our first target T e - 168 MHz madamum frequency, 210 DMIPS/1.25 DMIPS/MHz
. y . g —'-‘ - Memary protection unit
. 2 e
15. Sm.nlarily, change Source; Group 1 to Startup. 6l stvmne S T T
This will add some consistency to your project £ STU3ZFAITVE MK e o
: : ~£4 STM32FAITVG (sm;:ns t:;zaegoﬂwa;? 'SRAM, PSRAM, NOR NAND memories)
with the Keil examples. You can name theseg STM3ZFH7ZE. | [LCh el e, G030 es00mades
s . : £1 STMI2F4172G Clock, reset and supply et
or organize them differently to suit yourself. 3 o mes e
1 -POR, PDR, PVD and BOR
16. Select File/Save All. £ sTH32LISICE 10 25 MH2 cryetd ssciltor
~£d STMIZLISICE o |- Intemal 16 MHz factoryimmed AC B
1| ﬂ—“nm”‘rﬂ » <| I »
Continued on the next page...
[ok |[cance | Help
24 Copyright © 2012 ARM Ltd. All rights reserved

STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit

www.keil.com

Select the source files and debug adapter:

1. Using MS Explore (right click on Windows Start icon), copy blinky.c and system_stm32f4xx.c from
C:\Kei\ARM\Boards\ST\STM32F4-Discovery\Blinky to the ..\ STM32F4-Discovery\FAE folder you created. Copy
these files from an example project that utilizes a similar STM32 processor as you are using.

Source Files:

2. In the Project Workspace in the upper left hand of pVision, right-click on “STM32F4 Flash” and select “Add Group”.
Name this new group “Source Files” and press Enter. You can name it anything. There are no restrictions from Keil.

3. Right-click on “Source Files” and select Add files to Group “Source

Files”. Project o x
4. Select the file Blinky.c and click on Add (once!) and then Close. =1 #_4 5TM32F4 Flash

System File: E| a Startup
5. Right-click on “Startup” and select Add files to Group “Source Files”. . startup_stm32f%ocs
6. Select system_stm32f4xx.c and click on Add (once!) and then Close. system_stm32f4oc.c
7. Your Project window will look similar to the one shown here: e ‘5 Source Files
Select your Debug Adapter: - |£] Blinky.c
8. By default the simulator is selected when you create a new pVision project. You probably need to change this to a
Debug adapter such as ST-Link, ULINK2 or ULINKpro.

9. Select Target Options &N or ALT-F7 and select the Debug tab. Select ULINK/ME Cortex Debugger as shown
below: If you are using another adapter such as ST-Link, J-Link or ULINKpro, select the appropriate adapter from
the pull-down list.

10. Select JTAG/SWD hardware debugging (as opposed to selecting the Simulator) by checking the circle just to the left
of the word “Use:” as shown in the window to the right:

11. Select Run to Main (unless you do not want this) [. x|

12. Select the Utilities tab and select the appropriate debug adapter and
the proper Flash algorithm for your processor.

13. Click on the Target tab and select MicroLIB for smaller programs. v Use: |ULINK2.-’ME Cortex Debugger |« | Settings | ‘

| Linker Debug |Ut|Irt|e5|

See www.keil.com/appnotes/files/apnt202.pdf for details.
14. Click on OK. !
Modify Blinky.c
15. Double-click the file Blinky.c in the Project window to open it in the editing window or click on its tab if open.
16. Delete everything in Blinky.c except the main () function to provide a basic platform to start with:

iinclude <stdio.h>
#include ""STM32F4xx.h"

int main (void) {
while (1); { loop forever
3

}

17. Select File/Save All
Compile and run the program:

18. Compile the source files by clicking on the Rebuild icon. . You can also use the Build icon beside it.

Loal

19. Program the STM32 flash by clicking on the Load icon: ¥# Progress will be indicated in the Output Window.
20. Enter Debug mode by clicking on the Debug icon. @

21. Click on the RUN icon. Note: you stop the program with the STOP icon. Q

22. The program will run but since while (1) is empty — it does not do much. It consists of a NOP and Branch to itself.
You can set a breakpoint on any assembly or source lines that have a darker grey box signifying assembly code.
23. You are able to add your own source code to create a meaningful project.
This completes the exercise of creating your own project from scratch.

You can also configure a new RTX project from scratch using the RTX_Blinky project.

25 Copyright © 2012 ARM Ltd. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com

ETM Trace Examples:

These examples were run on the STM3240G-EVAL evaluation board. These are applicable for the Keil MCBSTM32F400
board. These examples are included for reference. A ULINKpro debug adapter is required for ETM operation.

ETM provides serious debugging power as shown on the next few pages. It is worth the small added cost.

Most STM32 processors are ETM equipped.

1.

2.

10.

11.

12.
13.

Connect the ULINKpro to the STM3240G board using the 20 pin CN13 Trace connector.

. L . . LY.
Start pVision by clicking on its desktop icon. =&
Select Project/Open Project. Open C:\Kei\ARM\Boards\ST\STM3240G-EVAL\ Blinky Ulp\Blinky.uvproj.

TracePort Instruction Trar =

Select TracePort Instruction Trace in the Target Options box as shown here:

Compile the source files by clicking on the Rebuild icon. . You can also use the Build icon beside it.

LOAD
Program the STM32 flash by clicking on the Load icon: ¥# Progress will be indicated in the Output Window.
Enter Debug mode by clicking on the Debug icon. @ Select OK if the Evaluation Mode box appears.
DO NOT CLICK ON RUN YET !!!
Open the Data Trace window by clicking on the small arrow beside the Trace Windows icon. ==>

V| Trace Data

Exceptions

Counters

Examine the Instruction Trace window as shown below: This is a complete record of all the program flow since
RESET until pVision halted the program at the start of main() since Run To main is selected in pVision.

|Trace Data 1 x |
" Display: All 7| & - in Al = -
Time Address / Port Instruction / Data Src Code / Trigger Addr
X : 0x080014E4 CMP r2,#0x00 ;I
0.000 122 800 5| ¥ : 0x050014E6 * BNE 0x050014EQ
0.000 122 833 5| ¥ : 0x050014E3 BX Ir
X 0x03001432 ADDS 4, rd #0x10
X 0x03001434 CMP 4,15
0.000 122933 5| ¥: 0x08001436 *BICC 0x05001426
X : 0x08001435 BLW 0x05000190
¥ 1 0x03000190 LDR 0, [pc,#0] ; @0x03000194
0.000 123 200 s | X : 0x05000192 BX i j
-
@Disassembly | ﬂ Logic Analyzer | @Trace Data

In this case, 123 200 s shows the last instruction to be executed. (BX r0). In the Register window the PC will display

=
the value of the next instruction to be executed (0x0800 0192 in my case). Click on Single Step once. &

The instruction PUSH will display: | 0x080011DA | PUSH (r3,Ir) | int main(void) { /* Main Program */ |

Scroll to the top of the Instruction Trace window to frame # 1. This is
nearly the first instruction executed after RESET.

A STM3240G-EVAL board connected to a ULINKpro using the
special CoreSight 20 pin ETM connector:

™

26 Copyright © 2012 ARM Ltd. All rights reserved

STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com

3) Code Coverage:

14. Click on the RUN icon. After a second or so stop the program with the STOP icon. 0
15. Examine the Disassembly and Blinky.c windows. Scroll and notice different color blocks in the left margin:

16. This is Code Coverage provided by ETM trace. This indicates if an instruction has been executed or not.

Colour blocks indicate which assembly instructions have been executed.

Ox028001042 F1BOTFEO CHMP r0, #0x1000000
0x08001046 D300 BCC 0x0800104R
- : : 8 8 B 8 8
1. Green: this assembly instruction was executed. Ox08001048 EOIC - oxos0o1oes
1141: SysTick->LORD = (ticks & SysTick]
2. Gray: this assembly instruction was not executed. 0x0800104A FO20417F BIC rl,r0, #0xFF000!
. Ox0S800104E 1E485 SUES rl,rl,#1
3. Orange: a Branch is always not taken. 0x08001050 FO4F22E0 MOV r2,#0xEQ00EQOO
4. Cyan: a Branch is always taken 0x08001054 &151 STR rl, [r2,$0x14]
’ ’) 1142: NVIC SetPriority (SysTick IRQm, (1«
5. Light Gray: there is no assembly instruction at 0x08001056 BFOO HOE
thlS point 1014: if(IRgm « 0)
' Ox08001058 1751 LSRS rl,r2, #2939
6. RED: Breakpoint is set here. 0x0800105A 2300 cMp rl, $0x00
I . . O0x0800105C DROS BGE O0x028001064
7. Next instruction to be executed. 1015: SCE->SHP[((uint32_t) (IRQn) & OXF
{}3 1016: else {
0x0800105E 210F MOVS rl, #0x0F
In the window on the right you can easily see examples of each type of 0x08001060 0109 LSLS rl,r1,#4
. . 4
Code Coverage block and if they were executed or not and if branches
were taken (OI' not) @Disassembly Q Logic Analyzer | ﬂ Instruction Trace |

Why was the branch BCC always taken resulting in 0x0800 1048 never being executed ? Or why the branch BGE at
0x800_105C was never taken ? You should devise tests to execute these instructions so you can test them.

Code Coverage tells what assembly instructions were executed. It is important to ensure all assembly code produced by the
compiler is executed and tested. You do not want a bug or an unplanned circumstance to cause a sequence of untested
instructions to be executed. The result could be catastrophic as unexecuted instructions cannot be tested. Some agencies such
as the US FDA require Code Coverage for certification.

Good programming practice requires that these unexecuted instructions be identified and tested.
Code Coverage is captured by the ETM. Code Coverage is also available in the Keil Simulator.

A Code Coverage window is available as shown below. This window is available in View/Analysis/Code Coverage. Note
your display may look different due to different compiler options.

codecoverage x|
Update || Clear ‘ Module:I:AII Modules> j

Modules/Functions | Execution percentage I;|
- Blinky
o ADC_init 1007 of 65 instructions, 2 condjump(s) not fulty executed

100% of 95 instructions
100% of 13instructions
100% of 1% instructions
100% of 17 instructions
947 of 109 instructions, 2 condjump(s) not fulty executed

B IRQ
- SysTick_Handler 1007 of 48 instructions, 1 condjumpig) not fulty executed
- Calcfverage 100% of 25 instructions

100 of 17 instructions, 1 condjump(s) not fulty executed

100% of 47 instructions
687 of 22 instructions, 3 condjumpig) not fulty executed
0% of 8 instructions

100% of & instructions

0% of 4 instructions

0% of 3 instructions

0% of 5instructions

_sys_exit 0% of 2 instructions -

@Disassanhl}' | ﬂ Logic Analyzer c‘o}: Code Coverage Q Instruction Trace

27 Copyright © 2012 ARM Ltd. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com

4) Performance Analysis (PA):

Performance Analysis tells you how much time was spent in each function. The data can be provided by either the SWV PC
Samples or the ETM. If provided by the SWV, the results will be statistical and more accuracy is improved with longer runs.
Small loops could be entirely missed. ETM provides complete Performance Analysis. Keil provides only ETM PA.

Keil provides Performance Analysis with the uVision simulator or with ETM and the ULINKpro. SWV PA is not offered.
The number of total calls made as well as the total time spent in each function is displayed. A graphical display is generated
for a quick reference. If you are optimizing for speed, work first on those functions taking the longest time to execute.

Use the same setup as used with Code Coverage.

2. Select View/Analysis Windows/Performance Analysis. A window similar to the one below will open up.

3. Exit Debug mode and immediately re-enter it. @ This clears the PA window and resets the STM32 and reruns it to
main() as before. Or select the Reset icon in the PA window to clear it. Run the program for a short time.

4. Expand some of the module names as shown below.

5. Note the execution information that has been collected in this initial short run. Both times and number of calls is
displayed.

6. We can tell that most of the time at this point in the program has been spent in the GLCD routines.

Resst ‘ Show: IModuIes j
Module/Function Calls Time(Sec) Time(%) | o
= By T67s 1007 [E— |
Bl GLCD_16bitlF_STM32F2ac.c 1.165¢ 100 B
"""" delay 5 699.090 ms 60z R |
"""" rd_reg 1 0.600us A |
"""" GLCD_lnit 1 13.767 us 0% |
"""" GLCD_SetWindow 455 321200 us 0|
"""" GLCD_WindowMax 5 2067 us IFS |
"""" GLCD_PutPieel 0 lus 0% |
"""" GLCD_Set TextColor 748 60.383 us 0% |
"""" GLCD_SetBackColor 2 0.367 us A |
"""" GLCD_Clear 1 8.000 ms IS |
"""" GLCD_DrawChar_U8 0 lus 0% b
"""" GLCD_DrawChar_U16 77 10.004 ms 1% |
"""" GLCD_DisplayChar 77 58.000 us A |
"""" GLCD_DisplayString 4 16.067 us 0% |
"""" GLCD_Clearln 0 lus 0% |
"""" GLCD_Bargraph 373 250.735 ms 21w
"""" GLCD_Bitmap 0 Ous A |
"""" GLCD_Bmp 0 Ous 0% |
"""" GLCD_ScrollVertical 0 lus A |
"""" wr_cmd 3233 510.700 us 0% |
"""" wr_dat 2781 220.367 us 0|
"""" wr_dat_only 1417418 194.013 ms 17 I
"""" Wr_reg 2781 1.545ms 0| -

@Disassenmly | E Performance Analyzer ﬂ Logic Analyzer |c3= Code Coverage | ﬂTl'ace Data |

Click on the RUN icon.

Note the display changes in real-time while the program Blinky is running. There is no need to stop the processor to
collect the information. No code stubs are needed in your source files.

9. Select Functions from the pull down box as shown here and notice the difference.

10. Exit and re-enter Debug mode again and click on RUN. Note the different data set displayed.

11. When you are done, exit Debug mode.

TIP: You can also click on the RESET icon * %7 but the processor will stay at the initial PC and will not run to main(). You

can type g, main in the Command window to accomplish this.

When you click on the RESET icon, the Initialization File .ini will no longer be in effect and this can cause SWV and/or ETM
to stop working. Exiting and re-entering Debug mode executes the .ini script again.

28 Copyright © 2012 ARM Ltd. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com

5) Execution Profiling:

Execution Profiling is used to display how much time a C source line took to execute and how many times it was called. This
information is provided by the ETM trace. It is possible to group source lines (called collapse) to get combined times and
number of calls. This is called Outlining. The pVision simulator also provides Execution Profiling.

1. Enter Debug mode. Execution Profiling 4 Disabled
2. Select Debug/Execution Profiling/Show Time. il <how Time
. . Memory Map...
3. In the left margin of the disassembly and C source B Show Calls
windows will display various time values. T
. Function Editor (Open Ini File)... Reset Information

4. Click on RUN.

5. The times will start to fill up as shown below right:

6. Click inside the yellow margin of Blinky.c to refresh it.

7. This is done in real-time and without stealing CPU cycles.

8. Hover the cursor over a time and ands more information appears as in the yellow box here:
Time: Calls: Average:
19.599 139910257 * 0.140 s

9. Recall you can also select Show Calls and this information rather than the execution times will be displayed in the
margin.

Abstract.tx't/ Blinky.c r core_cm3.h I

207 0.050 ps GLCD_SetTextColor (Blue);
208 $endif // __USE_LCD
209
210 0.033 ps while (1} {
211 14793 | AD value = AD last;
212 2157 2 if (AD walue != AD last)
213 0.033 ps AD walue = AD last;
214
215 14145 if (AD walue != AD print) {
216 $ifdef _ USE_LCD
217 T.967 ps GLCD SetTextColor (Red):
218 10817 ps GLCD Bargraph (9 * _ FONT W
2148 E117 ps GLCD SetTextColor (White):
220 #endif // USE LCD
221
222 3175 ps AD print = AD value;
223 E.380 ps AD dbg = AD wvalue;
224 }
225
226 FA#* Printf message with AD wal
227 2297 s if (clock 1s) {
228 0500 ps clock_1s = 0;
229 0.EBEY ps sprintf (text, "AD wvalue =
230
231 Time: Calls: Average:
292 0] 0.667 ps g * 0.074 ps e);
233 0875 ps GLCD DisplayString(5, 0, _
234 #endif // _USE 1CD
235 0.483 ps printf ("#=\r\n", text);
236 H
"‘\"\-r
29 Copyright © 2012 ARM Ltd. All rights reserved

®

STMicroelectronics Discovery STM32F407 Lab with ARM™ Keil™ MDK toolkit www.keil.com

6) In-the-Weeds Example:

Some of the hardest problems to solve are those when a crash has occurred and you have no clue what caused this. You only
know that it happened and the stack is corrupted or provides no useful clues. Modern programs tend to be asynchronous with
interrupts and RTOS task switching plus unexpected and spurious events. Having a recording of the program flow is useful
especially when a problem occurs and the consequences are not immediately visible. Another problem is detecting race
conditions and determining how to fix them. ETM trace handles these problems and others easily and is not hard to use.

If a Hard Fault occurs, the CPU will end up at the address specified in the Hard Fault vector located at 0x00 000C. This
address points to the Hard Fault handler. This is usually a branch to itself and this Branch instruction will run forever. The
trace buffer will save millions of the same branch instructions. This is not useful. We need to stop the CPU at this point.

This exception vector is found in the file startup stm32f4xx.s. If we set a breakpoint by double-clicking on the Hard Fault
handler and run the program: at the next Hard Fault event the CPU will jump to the Hard Fault handler (in this case located at
0x0800 01BO0 as shown to the right) and stop. Disassembly

193: B . -

194: ENDP

The CPU and also the trace collection will stop. The trace

. 195: MemMan Handler,
buffer will be visible and extremely useful to investigate and Tee, R e
M 197: EXPORT MemManage Handler [WERK]
deteMIne the cause Of the CraSh 0}:08000130 ET7FE B HardFault Handler (0x0E80001B0)
198: B

1. Open the Blinky Ulp example, rebuild, program the os: mpe
Flash and enter Debug mode. Open the Data Trace 200, usERe Sedens _,|21

WindOW. @Disassemmy ﬂ Logic Analyzer \

2. Locate the Hard fault vector near line 207 in the disassembly window or in startup _stm32f4xx.s.

Set a breakpoint at this point. A red block will appear as shown above.

4. Run the Blinky example for a few seconds and click on STOP.

fl
5. Click on the Step Out icon ¥ to go back to the main() program as shown in the Call Stack + Locals window:

6. In the Disassembly window, scroll down until you find a LU _ =
. . Mame Location/Value Type
POP instruction. I found one at 0x0800 1256 as shown = @ main ORI int 0
below in the third window: @ AD_value 0:0390 auto - unsigned short
Lo W AD_print 0x038D auto - unsigned short
7. Right click on the POP instruction (or at the MOV at .
0x0800 124E as shown below) and select Set Program S1Call tack + Locas | Watcn 1 | ElMemon 1

Counter. This will be the next instruction executed.
Click on RUN and immediately the program will stop on the Hard Fault exception branch instruction.

Examine the Data Trace window and you find this POP plus everything else that was previously executed. In the
bottom screen are the 4 MOV instructions plus the offending POP.

10. Note the Branch at the Hard Fault does not show in the trace window because a hardware breakpoint does execute the

instruction it is set to therefore it is not recorded in the trace buffer. 0%08001248 F1R20401 SUB 4,4, $0x01
0x0800124C DCDF BGT 0x0800120E
I:{}OxO-EOOlZ&E 4648 MOV r0,r8
0x08001250 4631 MOV rl,r6
0x08001252 462A MoV r2,z5
0x08001254 4643 MOV r3, r8
0x08001256 ESBDSFF0 POP {r4-rl2,pc}
0x08001254 0000 MOVS £0,z0
__scatterload:
 Display: All - = - in Al - = Ed
Time Address / Port Instruction / Data Src Code / Trigger Addr
¥:0x08000DD4 | LDRE rl,[r0, #0x00] |
X1 003000006 CBZ r1,0x050000ED
1.215 414 190 s | X : 0x08000DED MOV i, #0xFFFFFFFF return -1; /* Conw, in pro...
1.215 414 210 5 | ¥ : 0x08000DES BX Ir
¥ 0x0800124E MO i, ra
¥ 003001250 MOV ri,re
X1 003001252 MOV r2,rs
¥ 003001254 OV r3,rg
1,215 420 300 s | X : 0x08001 256 POP r4-rL2,pc} TI

The frames above the POP are a record of all previous instructions executed and tells you the complete program flow.

30 Copyright © 2012 ARM Ltd. All rights reserved

®

STMicroelectronics Discovery STM32F407 Lab with ARM™ Keil™ MDK toolkit www.keil.com

21) Serial Wire Viewer and ETM Trace Summary:

Serial Wire Viewer can see:

Global variables.

Static variables.

Structures.

Peripheral registers — just read or write to them.

Can'’t see local variables. (just make them global or static).

Can’t see DMA transfers —- DMA bypasses CPU and SWV by definition.

Serial Wire Viewer displays in various ways:

PC Samples.

Data reads and writes.
Exception and interrupt events.
CPU counters.

Timestamps.

ETM Trace is good for:

Trace adds significant power to debugging efforts. Tells where the program has been.

A recorded history of the program execution in the order it happened.

Trace can often find nasty problems very quickly. Weeks or months can be replaced by minutes.
Especially where the bug occurs a long time before the consequences are seen.

Or where the state of the system disappears with a change in scope(s).

Plus - don’t have to stop the program. Crucial to some projects.

These are the types of problems that can be found with a quality ETM trace:

Pointer problems.
Illegal instructions and data aborts (such as misaligned writes).

Code overwrites — writes to Flash, unexpected writes to peripheral registers (SFRs), a corrupted stack.
How did | get here ?

Out of bounds data. Uninitialized variables and arrays.
Stack overflows. What causes the stack to grow bigger than it should ?

Runaway programs: your program has gone off into the weeds and you need to know what instruction caused this. Is
very tough to find these problems without a trace. ETM trace is best for this.

Communication protocol and timing issues. System timing problems.

For information on Instruction Trace (ETM) pleas e visit www.keil.com/st for other labs discussing this.

22) Useful Documents:

1.

2.
3.
4

The Definitive Guide to the ARM Cortex-M3 by Joseph Yiu. (he also has one for the Cortex-M0) Search the web.
MDK-ARM Compiler Optimizations: Appnote 202: www.keil.com/appnotes/files/apnt202.pdf
Lazy Stacking and Context Switching Appnote 298: www.arm.com and search for Lazy Stacking.

A list of resources is located at: http://www.arm.com/products/processors/cortex-m/index.php
Click on the Resources tab. Or search for “Cortex-M3” on www.arm.com and click on the Resources tab.

ARM Infocenter: http://infocenter.arm.com Look for Application Notes and Cortex-M4 listings.

31 Copyright © 2012 ARM Ltd. All rights reserved

STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com

23) Keil Products and Contact Information:

Keil Microcontroller Development Kit (MDK-ARM™)
= MDK-Lite (Evaluation version) $0
= MDK-Basic (256K Compiler Limit, No debug Limit) - $2,695
= MDK-Standard (unlimited compile and debug code and data size) - $4,895
= MDK-Professional (Includes Flash File, TCP/IP, CAN and USB driver libraries) $9,995

USB-JTAG adapter (for Flash programming too)
* ULINK2 - $395 (ULINK2 and ME - SWV only — no ETM)
= ULINK-ME — sold only with a board by Keil or OEM.

= ULINKpro - $1,395 — Cortex-Mx SWV & ETM trace.
MDK also supports ST-Link and Segger J-Link Debug adapters.

= For special promotional pricing and offers, please contact Keil Sales.

The Keil RTX RTOS is now provided under a Berkeley BSD type license. This makes it free. s —
All versions, including MDK-Lite, includes Keil RTX RTOS with source code ! {
Keil provides free DSP libraries for the Cortex-M3 and Cortex-M4.

Call Keil Sales for details on current pricing, specials and quantity discounts.
Sales can also provide advice about the various tools options available to you. s e
They will help you find various labs and appnotes that are useful. 3

'e e |
DEI_(E“!- Development Tools
L

All products are available from stock.

All products include Technical Support for 1 year. This is easily renewed.

Call Keil Sales for special university pricing. Go to www.arm.com and search for
university to view various programs and resources.
MDK supports STM32 Cortex-M3 and Cortex-M4 processors. Keil supports

many other ST processors including 8051, ARM7, ARM9™ and ST10
processors. See the Keil Device Database”™ on www.keil.com/dd for the complete
list of STMicroelectronics support. This information is also included in MDK.

Note: USA prices. Contact sales.intl@keil.com for pricing in other countries.

Prices are for reference only and are subject to change without notice.

For the entire Keil catalog see www.keil.com or contact Keil or your local distributor.

For Linux, Android and bare metal (no OS) support on ST processors such as SPEAr, please see DS-5 www.arm.com/ds5.

For more information:
Keil Sales In USA: sales.us@keil.com or 800-348-8051. Outside the US: sales.intl@keil.com
Keil Technical Support in USA: support.us@keil.com or 800-348-8051. Outside the US: support.intl@keil.com.

For comments or corrections please email bob.boys@arm.com.

For the latest version of this document, go to www.keil.com/atmel and for more Atmel specific information.

Segger: www.segger.com. CMSIS Version 3: www.onarm.com/downloads or www.arm.com/cmsis

™

CMSIS ~ =g = .
MM Cortex D |KEIL

32 Copyright © 2012 ARM Ltd. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com

Intelligent Processors by ARM®

