/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file PWR/PWR_LPSLEEP/Src/main.c * @author MCD Application Team * @brief This sample code shows how to use STM32G0xx PWR HAL API to enter * and exit the Low Power Sleep mode. ****************************************************************************** * @attention * * Copyright (c) 2018-2020 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ #define LED_TOGGLE_DELAY 100 /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ ADC_HandleTypeDef hadc1; RTC_HandleTypeDef hrtc; /* USER CODE BEGIN PV */ static uint32_t TimingDelay; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_RTC_Init(void); static void MX_ADC1_Init(void); /* USER CODE BEGIN PFP */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Decrease(void); void ADC_Desequence_Powerhungry_Channels( void ); void smartlogger_set_gpios_as_lowpower( void ); /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_RTC_Init(); MX_ADC1_Init(); /* USER CODE BEGIN 2 */ /* Enable Power Clock */ __HAL_RCC_PWR_CLK_ENABLE(); /* Configure LED4 */ BSP_LED_Init(LED4); /* User push-button (line 4_15) will be used to wakeup the system from STOP mode */ BSP_PB_Init(BUTTON_USER, BUTTON_MODE_EXTI); /* Enable Flash power down mode during Sleep mode */ /* (uncomment this line if power consumption figures */ /* must be measured with Flash still on in Low Power */ /* Sleep mode) */ HAL_PWREx_EnableFlashPowerDown(PWR_FLASHPD_LPSLEEP); RCC->IOPSMENR = 0x00u; RCC->AHBSMENR = 0x00u; RCC->APBSMENR1 = 0x00u; RCC->APBSMENR2 = 0x00u; /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ TimingDelay = HAL_ADC_GetValue( &hadc1 ); ADC_ConversionStop( &hadc1 ); ADC_Desequence_Powerhungry_Channels(); HAL_ADC_MspDeInit( &hadc1 ); /* Reduce the System clock to below 2 MHz */ // GPIO_InitTypeDef GPIO_InitStruct = {0}; // // GPIO_InitStruct.Pin = GPIO_PIN_7; // GPIO_InitStruct.Mode = GPIO_MODE_INPUT; // GPIO_InitStruct.Pull = GPIO_PULLDOWN; // GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; // HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /* Insert 3 seconds delay */ HAL_Delay(3000); /* Reduce the System clock to below 2 MHz */ SystemClock_Decrease(); smartlogger_set_gpios_as_lowpower(); __HAL_PWR_CLEAR_FLAG(PWR_FLAG_WUF); HAL_PWR_EnableWakeUpPin(PWR_WAKEUP_PIN1); /* De-init LED4 */ BSP_LED_DeInit(LED4); // stALARME alarme = { .Hours = 0, .Minutes = 2, .Seconds = 0 }; // // rtc_set_alarm( alarme ); // // HAL_RTCEx_DeactivateWakeUpTimer(&hrtc); // // /*## Configure the Wake up timer ###########################################*/ /* RTC Wake-up Interrupt Generation: Wake-up Time Base = (RTC_WAKEUPCLOCK_RTCCLK_DIV /(LSI)) ==> WakeUpCounter = Wake-up Time / Wake-up Time Base To configure the wake up timer to 10s the WakeUpCounter is set to 0x1770: RTC_WAKEUPCLOCK_RTCCLK_DIV = RTCCLK_Div16 = 16 Wake-up Time Base = 16 /(32KHz) = 0.0005 seconds ==> WakeUpCounter = ~10s/0.0005s = 20000 = 0x1770 */ // if (HAL_RTCEx_SetWakeUpTimer_IT(&hrtc, 5, RTC_WAKEUPCLOCK_CK_SPRE_16BITS) != HAL_OK) // { // __NOP(); // // } HAL_RTCEx_SetWakeUpTimer_IT(&hrtc, 5, RTC_WAKEUPCLOCK_CK_SPRE_16BITS); /* Suspend Tick increment to prevent wakeup by Systick interrupt. */ /* Otherwise the Systick interrupt will wake up the device within 1ms */ /* (HAL time base). */ HAL_SuspendTick(); /* Enter Sleep Mode, wake up is done once User push-button is pressed */ // HAL_PWR_EnterSLEEPMode(PWR_LOWPOWERREGULATOR_ON, PWR_SLEEPENTRY_WFI); HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_SLEEPENTRY_WFI); /* ... Low-power SLEEP mode ... */ /* System is Low Power Run mode when exiting Low Power Sleep mode, disable low power run mode and reset the clock to initialization configuration */ HAL_PWREx_DisableLowPowerRunMode(); // HAL_NVIC_SystemReset();//by well /* Configure the system clock for the RUN mode */ SystemClock_Config(); /* Re-init LED4 to toggle during Run mode */ BSP_LED_Init(LED4); /* Resume Tick interrupt if disabled prior to Low Power Sleep mode entry */ HAL_ResumeTick(); } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1); /** Configure LSE Drive Capability */ HAL_PWR_EnableBkUpAccess(); __HAL_RCC_LSEDRIVE_CONFIG(RCC_LSEDRIVE_LOW); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_LSE; RCC_OscInitStruct.LSEState = RCC_LSE_ON; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSIDiv = RCC_HSI_DIV1; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV4; RCC_OscInitStruct.PLL.PLLN = 70; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV10; RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV5; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } /** * @brief ADC1 Initialization Function * @param None * @retval None */ static void MX_ADC1_Init(void) { /* USER CODE BEGIN ADC1_Init 0 */ /* USER CODE END ADC1_Init 0 */ ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC1_Init 1 */ /* USER CODE END ADC1_Init 1 */ /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) */ hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV10; hadc1.Init.Resolution = ADC_RESOLUTION_12B; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE; hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV; hadc1.Init.LowPowerAutoWait = DISABLE; hadc1.Init.LowPowerAutoPowerOff = DISABLE; hadc1.Init.ContinuousConvMode = DISABLE; hadc1.Init.NbrOfConversion = 2; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc1.Init.DMAContinuousRequests = DISABLE; hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED; hadc1.Init.SamplingTimeCommon1 = ADC_SAMPLETIME_1CYCLE_5; hadc1.Init.SamplingTimeCommon2 = ADC_SAMPLETIME_1CYCLE_5; hadc1.Init.OversamplingMode = DISABLE; hadc1.Init.TriggerFrequencyMode = ADC_TRIGGER_FREQ_HIGH; if (HAL_ADC_Init(&hadc1) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_VREFINT; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLINGTIME_COMMON_1; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_7; sConfig.Rank = ADC_REGULAR_RANK_2; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC1_Init 2 */ /* USER CODE END ADC1_Init 2 */ } /** * @brief RTC Initialization Function * @param None * @retval None */ static void MX_RTC_Init(void) { /* USER CODE BEGIN RTC_Init 0 */ /* USER CODE END RTC_Init 0 */ RTC_TimeTypeDef sTime = {0}; RTC_DateTypeDef sDate = {0}; /* USER CODE BEGIN RTC_Init 1 */ /* USER CODE END RTC_Init 1 */ /** Initialize RTC Only */ hrtc.Instance = RTC; hrtc.Init.HourFormat = RTC_HOURFORMAT_24; hrtc.Init.AsynchPrediv = 127; hrtc.Init.SynchPrediv = 255; hrtc.Init.OutPut = RTC_OUTPUT_DISABLE; hrtc.Init.OutPutRemap = RTC_OUTPUT_REMAP_NONE; hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH; hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN; hrtc.Init.OutPutPullUp = RTC_OUTPUT_PULLUP_NONE; if (HAL_RTC_Init(&hrtc) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN Check_RTC_BKUP */ /* USER CODE END Check_RTC_BKUP */ /** Initialize RTC and set the Time and Date */ sTime.Hours = 0x0; sTime.Minutes = 0x0; sTime.Seconds = 0x0; sTime.SubSeconds = 0x0; sTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE; sTime.StoreOperation = RTC_STOREOPERATION_RESET; if (HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BCD) != HAL_OK) { Error_Handler(); } sDate.WeekDay = RTC_WEEKDAY_MONDAY; sDate.Month = RTC_MONTH_JANUARY; sDate.Date = 0x1; sDate.Year = 0x0; if (HAL_RTC_SetDate(&hrtc, &sDate, RTC_FORMAT_BCD) != HAL_OK) { Error_Handler(); } /** Enable the WakeUp */ if (HAL_RTCEx_SetWakeUpTimer_IT(&hrtc, 5, RTC_WAKEUPCLOCK_CK_SPRE_16BITS) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN RTC_Init 2 */ /* USER CODE END RTC_Init 2 */ } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); } /* USER CODE BEGIN 4 */ /** * @brief System Clock Speed decrease * The system Clock source is shifted from PLL to HSI DIV8 * to go down to 2 MHz * @param None * @retval None */ void SystemClock_Decrease(void) { RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_OscInitTypeDef RCC_OscInitStruct = {0}; /* Select HSI as system clock source */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { /* Initialization Error */ Error_Handler(); } /* Modify HSI to HSI DIV8 */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSIDiv = RCC_HSI_DIV8; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { /* Initialization Error */ Error_Handler(); } } /** * @brief SYSTICK callback * @param None * @retval None */ void HAL_SYSTICK_Callback(void) { if (TimingDelay != 0) { TimingDelay--; } else { /* Toggle LED4 */ BSP_LED_Toggle(LED4); TimingDelay = LED_TOGGLE_DELAY; } } void ADC_Desequence_Powerhungry_Channels( void ){ ADC_ChannelConfTypeDef sConfig; /**Configure for the selected ADC regular channel NOT to be converted. */ sConfig.Channel = ADC_CHANNEL_VREFINT; sConfig.Rank = ADC_RANK_NONE; // Disable the selected rank (selected channel) from sequencer if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK){ Error_Handler(); } } void smartlogger_set_gpios_as_lowpower( void ){ __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOD_CLK_ENABLE(); __HAL_RCC_GPIOF_CLK_ENABLE(); HAL_GPIO_Init( GPIOA, &((GPIO_InitTypeDef){.Pin = GPIO_PIN_All & ~(GPIO_PIN_7|GPIO_PIN_13|GPIO_PIN_14), .Mode = GPIO_MODE_INPUT, .Pull = GPIO_PULLDOWN, .Speed = GPIO_SPEED_FREQ_LOW, .Alternate = 0 } )); HAL_GPIO_Init( GPIOA, &((GPIO_InitTypeDef){.Pin = GPIO_PIN_7, .Mode = GPIO_MODE_INPUT, .Pull = GPIO_NOPULL, .Speed = GPIO_SPEED_FREQ_LOW, .Alternate = 0 } )); HAL_GPIO_Init( GPIOB, &((GPIO_InitTypeDef){.Pin = GPIO_PIN_All, .Mode = GPIO_MODE_INPUT, .Pull = GPIO_PULLDOWN, .Speed = GPIO_SPEED_FREQ_LOW, .Alternate = 0 } )); HAL_GPIO_Init( GPIOC, &((GPIO_InitTypeDef){.Pin = GPIO_PIN_All & ~(GPIO_PIN_14|GPIO_PIN_15), .Mode = GPIO_MODE_INPUT, .Pull = GPIO_PULLDOWN, .Speed = GPIO_SPEED_FREQ_LOW, .Alternate = 0 } )); HAL_GPIO_Init( GPIOD, &((GPIO_InitTypeDef){.Pin = GPIO_PIN_All & ~(GPIO_PIN_0), .Mode = GPIO_MODE_INPUT, .Pull = GPIO_PULLDOWN, .Speed = GPIO_SPEED_FREQ_LOW, .Alternate = 0 } )); HAL_GPIO_Init( GPIOD, &((GPIO_InitTypeDef){.Pin = GPIO_PIN_0, .Mode = GPIO_MODE_INPUT, .Pull = GPIO_PULLUP, .Speed = GPIO_SPEED_FREQ_LOW, .Alternate = 0 } )); HAL_GPIO_Init( GPIOF, &((GPIO_InitTypeDef){.Pin = GPIO_PIN_All, .Mode = GPIO_MODE_INPUT, .Pull = GPIO_PULLDOWN, .Speed = GPIO_SPEED_FREQ_LOW, .Alternate = 0 } )); __HAL_RCC_GPIOA_CLK_DISABLE(); __HAL_RCC_GPIOB_CLK_DISABLE(); __HAL_RCC_GPIOC_CLK_DISABLE(); __HAL_RCC_GPIOD_CLK_DISABLE(); __HAL_RCC_GPIOF_CLK_DISABLE(); } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* Suspend tick */ HAL_SuspendTick(); /* Turn LED4 on */ BSP_LED_On(LED4); while(1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* Infinite loop */ while (1) { } /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */