
STM32Java

Embedded Java Solutions for STM32

STM32Java Overview

Laurent Desseignes (ST)

Régis Latawiec (IS2T)

Embedded Java

Adding Java to your system

Focus on GUI Design

Q&A

Agenda

Speakers
Presentation

2

What is STM32Java ?

• STM32Java is a complete solution to develop and to

deploy applications on STM32 microcontrollers using

Java technologies

• The solution was developed by

• STMicroelectronics - semiconductor company

• IS2T - software editor (embedded Java solutions provider)

3

STM32Java Solution

• Dedicated STM32 Java enabled Devices

• « U » Part numbers for sampling (ex: STM32F407IGT6U)

• « J » Part numbers for production (ex: STM32F407IGT6J)

• An embedded Java SDK

• Based on MicroEJ® by IS2T

• On PC simulator for easy prototyping

• Java Virtual Machine with standard libraries & BSP

• A set of libraries & tools for Embedded Graphics:

• Widgets, Fonts, Images, …

4

Consumer

• Kitchen equipment

(Cookers, Ovens, Washing machines)

Home appliance

• Comfort (Heating)

• Security (Alarms, Access control)

Industrial, Metering

• Automation, Smart-metering

Healthcare

• Body control equipment

Target Markets for Embedded Java 5

Solved Business Issues

• Broaden product portfolio

• Improved software scalability to derivate new products from older ones

• Shorten product definition phase

• Use simulation capabilities to test prototypes, especially for GUI design

• Speed-up product first sales

• Train sales force using simulators before products are ready

6

Solved Business Issues

• Deliver on time

• Increase software productivity

• Improve software engineering skills

• Train your technical staff on Object Oriented Programming,

access to “pure” software people.

• Maintain quality level

• Improve testing capabilities

7

Embedded Java

Embedded Software Challenges

• Microcontrollers now offer more than 1M Bytes on-chip

Flash

• Embedded software complexity increases

• Testing time increases

• New topics complex to address such as Graphical User Interfaces

• Hardware & OS market fragmentation

• How to deal with a different ranges of processors?

• How to reuse existing embedded software, including RTOS?

9

Embedded Software Challenges

Need to industrialize embedded software production.

Object Oriented Programming & Virtual Platforms

are the known best solutions since the 80’s.

10

Agility

Object Oriented

Programming

Java Virtual

Platforms

Prototyping

Java Technology Key Benefits

• Use a modern programming technology

• Object oriented to enable loose entity coupling and

complex entity organizations (business code, widgets, servers)

• Portable across a wide range of platforms including 3rd party HW

like smart-phones

• Automatic RAM management, ideal for event driven systems like

GUIs

• Improve your software design process

• Short learning curve

• Better software productivity (x3 to x5 usually)

• Large engineer community

• Keep hardware & software design cycles independent

11

Embedded Java Platforms

Flexible JVM architectures to

fit hardware constraints

A Virtual Machine: a Virtual Processor

• 32-bit instructions set (~200 instructions, high density)

• Multitasking operation

• Automatic memory optimizer

• Run-time error handling

• Interface to other languages like C

13

Optimized MicroJvm® VMs by IS2T 14

Virtual
Processor
optimized
for STM32

Embedded Java Platform Example

• STM32F2x (Cortex-M3) – 120MHz

• 16-bit col. QVGA LCD, Touch

• APIs: CLDC, B-ON, MicroUI, MWT, SNI

• Boot time (reset to main(String[] args)): 2ms

Applicat ion M em ory Requirem ents

Flash 422KB RAM 42KB

Virtual Machine (runtime & GC) 28KB Virtual Machine 1KB

Libraries (graphics, com, float…) 132KB Native Stack 28KB

Graphical resources (images) 228KB

Application 34KB Application 13KB

Java needs

15

Prototyping Using Simulation

• Ubiquity

• Same binary code can be executed by different Java platforms on

various software and hardware platforms (PC, MCU/MPU, iOS &

Android devices, ...)

• Embedded / Simulated platforms

• Java calls C/asm (firmware, drivers) on target

• Native code simulated by mocks (SW/HW) on simulator

16

Replace Waterfall Design Process… 17

Agility – Combine Simulation & OOP 18

Adding Java to your system

Easy RTOS Integration (Green Thread)

• Multi-threaded Java

environment within a single

RTOS task

• Java thread scheduling policy

independent of the RTOS

• Easy control of CPU resource

usage for Java world

• CPU resource allocation

irrespective of the number of

threads

20

RTOS Examples

● FreeRTOS

● ThreadX, µC/OS, EmbOS

● Yours!

Easy Java ↔ C Interface (Calls 1/2)

• SNI (ESR 012) : Simple Native Interface

• Call Java world → C/asm

• Arguments: base types (int, float, double , char)

21

www.e-s-r.net

Easy Java ↔ C Interface (Calls 2/2)

• Easy mapping using naming convention

package GPIO;

public class Main {

 public static native void toggle();

 public static void main(String[] a) throws InterruptedException

{

 while(true){

 toggle();

 Thread.sleep(10);

 }

 }

}

#include <sni.h>

#include “gpio.h”

void Java_GPIO_Main_toggle(){

 GPIOE->ODR ^= GPIO_Pin_2 ;

}

22

Easy Java ↔ C Interface (Data 1/2)

• SNI (ESR 012): Simple Native Interface

• Share arrays of base types

• Zero copy buffers and compatible with DMA systems

23

www.e-s-r.net

Easy Java ↔ C Interface (Data 2/2)

• Immortals are used to share data memory between Java

and C

#include <sni.h>

jint Java_com_corp_examples_Hello_getData(jint* array){

 array[0] = 0xBEEF;

 return 1 ;

}

package com.corp.examples;

public class Hello {

 static int[] array = (int[])Immortals.setImmortal(new int[50]);

 public static native int getData(int[] array);

 public static void main(String[] args){

 int nb = getData(array);

 }

}

24

Simulation Platform Example

• Simulation is key to Design GUI

• Prototype several GUI options

• Anticipate human factors issues

• Check graphical design against display characteristics

Toggle LED Display message

25

Focus on GUI Design

Design GUI with MicroUI® & MWT

• MicroUI (ESR 002)

• 2D graphical APIs, character LCD, multi-display, fonts

• Button, joystick, LED, sound, touch & multi-touch

• Thread-Safe

• Model-View-Controller based

• MWT (ESR 011)

• Composite & Layout

• Focus management

• Look & Feel

• Full Java implementation

(high portability)

27

GUI Pack – Tools for GUI Design 28

StoryBoard Designer

Prototype how users move around menus

FrontPanel Designer

Design mechanical front panel with

displays, LEDs, buttons etc.

Font Designer

Import fonts or design fonts from scratch

GUI Pack – Widget Libraries
• Simple models

• Small memory footprint

• Look & Feel support

• More complex (composite)

• ….

29

March 2013 (C) 2005-2013, all rights reserved.

Source
given!

GUI Portability – Java Platform Level

• Use flexible Java platforms based on the MicroJvm® VM

• Available on a wide range of processor configurations

• OS agnostic

• Easy to interface to C/asm

• Typical usage

• Microcontrollers (simple RTOS) ↔ Processors (Linux)

• Android / iOS

• Other advantages

• Application code is portable too! (not only GUI)

• Green-thread guarantees same scheduling

30

Want to Try STM32Java?

• Free download at www.stm32java.com

• Embedded Java Evaluation Kit

• STM3220G-JAVA

• STM3240G-JAVA

• Web resources

• www.st.com/stm32-java

• www.stm32java.com

• ST Support

• support.stm32java@microej.com

31

http://www.stm32java.com/
http://www.st.com/stm32-java
http://www.st.com/stm32-java
http://www.st.com/stm32-java
http://www.stm32java.com/

Summary

• STM32Java solution brings:

• The intrinsic strengths of Java technology to STM32:

• OOP, Garbage Collector, Simulation, …

• Footprints and performances that fit STM32 portfolio

• Easy integration with existing C code

• An easy way to build up GUIs

• A complete answer with silicon, libraries and development environment

32

Q&A

