31/07/2018 85469[PostContent].html

Lately, I've been trying IAP over UART using Ymodem protocol for STM32F072C8 SOC based custom
board. The goal is to try IAP with this mode with different upgrade scenarios and later transform these into
my actual requirement. [was able to successfully perform IAP using ST provided libraries, IAP driver and
template (More information can be found Query on IAP over UART for STM32F072C8)

After this, I tried to put two different application firmware along with IAP driver in the main flash memory
and was also able to jump from IAP driver to application f/w1 or f/w2. The memory layout that I'm using
currently is as below:

Tablel: memory map of main flash memory (Total 64 kB)

Table2: memory map of SRAM (Total 16 kB)

</colgroup>

Component main flash memory Block number Size
Bootloader 0x08000000 ? 0x08003FFF 0 16 kB
fw 1 0x08004000 ? 0x08009FFF 0 24 kB
fw 2 0x0800A000 ? 0x0800FFFF 0 24 kB
Note

Mo el
Cperation

Set DFU MODE
Flag in NVRAM

.

Disnbbes indernapi,
call sottware
resat

—

OFU mode
flag st 7

Boot up process
begins

-

—

Update main Reset DFU MODE
flash meamony Flag in NVRAK

Call software
rgal

Beaat narmally

#if (defined (_CC_ARM))
__T0 uint32_t VectorTable[48] __attribute__((at(0©x20000000)));
#elif (defined (__ICCARM_))
#pragma location = 0x20000000
__no_init _ IO uint32_t VectorTable[48];
#telif defined (_GNUC__)

file:///C:/Users/hugo.lager/Desktop/3%20-%20Hugo/85469[PostContent].html

13

file:///C:/public/STe2ecommunities/mcu/Lists/cortex_mx_stm32/Flat.aspx?RootFolder=https%3a//my.st.com/public/STe2ecommunities/mcu/Lists/cortex_mx_stm32/Query%20on%20IAP%20over%20UART%20for%20STM32F072C8&FolderCTID=0x01200200770978C69A1141439FE559EB459D7580009C4E14902C3CDE46A77F0FFD06506F5B¤tviews=27

31/07/2018 85469[PostContent].html

__I0 uint32_t VectorTable[48] __attribute__((section(".RAMVectorTable")));
#elif defined (__TASKING__)

__I0 uint32_t VectorTable[48] __at(0x20000000) ;
#endif

void FLASH_If_Init(void)
{

/* Unlock the Program memory */
FLASH_Unlock();

/* Clear all FLASH flags */
FLASH_ClearFlag(FLASH_FLAG_EOP|FLASH_FLAG_WRPERR | FLASH_FLAG_PGERR | FLASH_FLAG_BSY);

int main(void)

{
uint32_t i = o;

FLASH_Status status;
for(i = 0; i < 48; i++)

{
}

VectorTable[i] = *(__IO uint32_t*)(APPLICATION_ADDRESS + (i<<2));

/* Enable the SYSCFG peripheral clock*/
RCC_APB2PeriphClockCmd (RCC_APB2Periph_SYSCFG, ENABLE);

/* Remap SRAM at ©x00000000 */
SYSCFG_MemoryRemapConfig(SYSCFG_MemoryRemap_SRAM);

[/ F Rk skok ok skok Rk k ok k- Add] your application code here sk ok sk stk ok ok sk ok stk ok sk skokok sk ok skok ok f
FLASH_If Init();
/* set flag to trigger IAP after a reset. this flag will be cleared by IAP driver after a
successful update */
status = FLASH_ProgramWord(0x0800E000, ©Ox1);

while (status != FLASH_COMPLETE);

while (1)

{
// do something

}

Please advise on what could be going wrong here and also any pointers on this overall design. Basically I
would like to have

1. The IAP driver do the upgrade part and application fimrwares should be only triggering IAP process
by setting some flag.

2. Safely store this flag(0x1) at some address that is beyond code or data region of any of the three
images

3. Flow should be System startup -> bootloader -> Initiate IAP or jump to fwl or fw2 (based on flag
value)

Environment

file:///C:/Users/hugo.lager/Desktop/3%20-%20Hugo/85469[PostContent].html 2/3

31/07/2018 85469[PostContent].html

status = FLASH_ErasePage(0x0800E000) ;

while (status != FLASH_COMPLETE){}

status = FLASH_ProgramWord(©x0800EQ00, OxDEADBEEF);
while (status != FLASH_COMPLETE){}

0x08004000, instead of the default location (0x08000000)? </colgroup> that I'm using the same SRAM
location for both application firmware (fwl, fw2)I'm able to put the three(IAP driver, fwl, fw2) images in
the main flash memory and was also able to jump from IAP driver to fwl or fw2. Now I would like to
implement the following logic (See the flow below)To achieve this, I should be able to store a variable in
main flash memory at an address accessible from each of the three images (IAP driver, fwl, fw2). However,
when [tried to set a flag at some address, which I think is not being utilized at the moment,in flash memory
from application firmware 1 (fw1), the system hung (I think I'm getting a hard fault here, but I need to
check). Code snip for storing Ox1 at some random address (note that this main flash memory address is
within the overall range i.e. 0x0800 0000 - 0x0800 FFFF)SOC: STM32F072C8 64kB Flash memory (ARM
cortex M0 based SOC)Main flash memory requirement: IAP driver + fwl + fw2Application f/w size: ~20 kB
(Theoratically, I should be able to fit in IAP driver and two differnt application firmware in 64kB flash
memory)IDE: KEIL uVision5 for windowsIAP Mode: UARTUtilities: fromelf.exe (For converting .hex files
into .bin file), ST Programmer (for In-circuit programming using SWD interface) and Hyperterminal
[1]Reference document: AN4065 [2]Update #1:I'm able to program the main flash memory from the IAP
driver, i.e. the following works when I invoke these in the IAP driver, but not when I try to do the same in
application firmware.Also, now I'm not able to debug the application fimrware using the KEIL uVision5
debugger window. None of the single stepping, step over, etc tabs are getting activated. Do I need to
configure some changes for debugger, since my application now is loaded at

Component Physical Block number Size Purpose
Bootloader NA NA NA NA
fw {112} 0x20000000 1 0x4000 Vector table relocation to SRAM

file:///C:/Users/hugo.lager/Desktop/3%20-%20Hugo/85469[PostContent].html 3/3

