#include <
stm32f10x.h
>
#define GPIO_PORT GPIOA
#define GPIO_PIN GPIO_Pin_2
#define LED_COUNT 2
/* Buffer that holds one complete DMA transmission.
*
* Ensure that this buffer is big enough to hold
* all data bytes that need to be sent.
*
* The buffer size can be calculated as followas:
* number of LEDs * 24 bytes + 42 bytes.
*
* This leaves us with a maximum string length of
* (2^16 bytes per DMA stream - 42 bytes)/24 bytes per LED = 2728 LEDs.
*/
uint16_t ledBuff[2*LED_COUNT+42];
uint8_t rgb[3][3] = {
{255, 0, 0},
{0, 255, 0},
{0, 0, 255}
};
GPIO_InitTypeDef GPIO_InitStruct;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStruct;
TIM_OCInitTypeDef TIM_OCInitStruct;
DMA_InitTypeDef DMA_InitStruct;
//Prototypes
void send_data(uint8_t (*color)[3], uint16_t len);
void Delay(__IO uint32_t nCount) {
while(nCount--) {
}
}
int main() {
int16_t i;
uint16_t PrescalerValue = (uint16_t) (72000000 / 24000000) - 1;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA , ENABLE); // Enable clock for GPIOA on APB2
GPIO_InitStruct.GPIO_Pin = GPIO_PIN; // Set the pin we want to use in the intialization structure.
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIO_PORT, &GPIO_InitStruct);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); // Enable clock for TIM2 on APB1
/* Time base configuration */
TIM_TimeBaseStruct.TIM_Period = (30*1)-1; // 800kHz // Species the how many clock cycles = 1 period????????
TIM_TimeBaseStruct.TIM_Prescaler = PrescalerValue; // Specifies the prescaler value used to divide the TIM clock.
TIM_TimeBaseStruct.TIM_ClockDivision = 0; // Specifies the clock division.
TIM_TimeBaseStruct.TIM_CounterMode = TIM_CounterMode_Up; //
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStruct);
/* PWM1 Mode configuration: Channel1 */
TIM_OCInitStruct.TIM_OCMode = TIM_OCMode_PWM1; // Specifies the TIM mode.
TIM_OCInitStruct.TIM_OutputState = TIM_OutputState_Enable; //
TIM_OCInitStruct.TIM_Pulse = 0;
TIM_OCInitStruct.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OC3Init(TIM2, &TIM_OCInitStruct);
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); // Enable clock for DMA1 on AHB
DMA_DeInit(DMA1_Channel1); // Deinitialize DAM1 Channel 1 to their default reset values.
DMA_InitStruct.DMA_PeripheralBaseAddr = (uint32_t)&TIM2->CCR1; // Specifies Physical address of the peripheral in this case Timer 2 CCR1
DMA_InitStruct.DMA_MemoryBaseAddr = (uint32_t)ledBuff; // Specifies the buffer memory address
DMA_InitStruct.DMA_DIR = DMA_DIR_PeripheralDST; // Data transfered from memory to peripheral
DMA_InitStruct.DMA_BufferSize = 42; // Specifies the buffer size
DMA_InitStruct.DMA_PeripheralInc = DMA_PeripheralInc_Disable; // Do not incrament the peripheral address
DMA_InitStruct.DMA_MemoryInc = DMA_MemoryInc_Enable; // Incrament the buffer index
DMA_InitStruct.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; // Specifies the peripheral data width
DMA_InitStruct.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; // Specifies the memory data width
DMA_InitStruct.DMA_Mode = DMA_Mode_Normal; // Specifies the operation mode. Normal or Circular
DMA_InitStruct.DMA_Priority = DMA_Priority_High; // Specifies the software priority
DMA_InitStruct.DMA_M2M = DMA_M2M_Disable; //
DMA_Init(DMA1_Channel1, &DMA_InitStruct); // Initialize DAM1 Channel 1 to values specified in the DMA_InitStruct structure.
TIM_DMACmd(TIM2, TIM_DMA_CC1, ENABLE); // Enables TIM2's DMA request. TIM_DMA_CC1 : TIM Capture Compare 1 DMA source
while (1){
/* first cycle through the colors on 2 LEDs chained together
* last LED in the chain will receive first sent triplet
* --> last LED in the chain will 'lead'
*/
for (i = 0; i < 3; i++)
{
send_data(&rgb[i], 2);
Delay(50000L);
}
/* cycle through the colors on only one LED
* this time only the first LED that data is
* fed into will update
*/
for (i = 0; i < 3; i++)
{
send_data(&rgb[i], 2);
Delay(50000L);
}
}
}
void send_data(uint8_t (*color)[3], uint16_t len) {
uint8_t i;
uint8_t led;
uint16_t memaddr;
uint16_t buffersize;
buffersize = (len*24)+42; // number of bytes needed is #LEDs * 24 bytes + 42 trailing bytes
memaddr = 0; // reset buffer memory index
led = 0;
while (len)
{
for (i = 0; i < 8; i++) // GREEN data
{
if ( (color[led][1]<<i) & 0x80 ) // data sent MSB first, j = 0 is MSB j = 7 is LSB
{
ledBuff[memaddr] = 17; // compare value for logical 1
}
else
{
ledBuff[memaddr] = 9; // compare value for logical 0
}
memaddr++;
}
for (i = 0; i < 8; i++) // RED data
{
if ( (color[led][0]<<i) & 0x80 ) // data sent MSB first, j = 0 is MSB j = 7 is LSB
{
ledBuff[memaddr] = 17; // compare value for logical 1
}
else
{
ledBuff[memaddr] = 9; // compare value for logical 0
}
memaddr++;
}
for (i = 0; i < 8; i++) // BLUE data
{
if ( (color[led][2]<<i) & 0x80 ) // data sent MSB first, j = 0 is MSB j = 7 is LSB
{
ledBuff[memaddr] = 17; // compare value for logical 1
}
else
{
ledBuff[memaddr] = 9; // compare value for logical 0
}
memaddr++;
}
led++;
len--;
}
// add needed delay at end of byte cycle, pulsewidth = 0
while(memaddr < buffersize)
{
ledBuff[memaddr] = 0;
memaddr++;
}
DMA_SetCurrDataCounter(DMA1_Channel1, buffersize); // load number of bytes to be transferred
DMA_Cmd(DMA1_Channel1, ENABLE); // enable DMA channel 1
TIM_Cmd(TIM2, ENABLE); // enable Timer 2
while(!DMA_GetFlagStatus(DMA1_FLAG_TC1)); // wait until transfer complete
TIM_Cmd(TIM2, DISABLE); // disable Timer 2
DMA_Cmd(DMA1_Channel1, DISABLE); // disable DMA channel 1
DMA_ClearFlag(DMA1_FLAG_TC1); // clear DMA1 Channel 1 transfer complete flag
}
#include <
stm32f10x.h
>
#define NUM_LEDS 10
void Delay(__IO uint32_t nCount) {
while(nCount--) {
}
}
#define TIM3_CCR1_Address 0x40000434 // physical memory address of Timer 3 CCR1 register
#define d2r (3.14159265/180)
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
GPIO_InitTypeDef GPIO_InitStructure;
DMA_InitTypeDef DMA_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
/* Buffer that holds one complete DMA transmission
*
* Ensure that this buffer is big enough to hold
* all data bytes that need to be sent
*
* The buffer size can be calculated as follows:
* number of LEDs * 24 bytes + 42 bytes
*
* This leaves us with a maximum string length of
* (2^16 bytes per DMA stream - 42 bytes)/24 bytes per LED = 2728 LEDs
*/
uint16_t LED_BYTE_Buffer[24 * NUM_LEDS + 42];
/* this array holds the RGB values to represent
* a color wheel using 256 steps on each emitter
* 256^3 = 16777216 colors
*/
uint8_t eightbit[766][3] =
{
{255, 0, 0},
{254, 1, 0},
{253, 2, 0},
{255, 0, 0},
};
void Timer3_init(void)
{
uint16_t PrescalerValue;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
/* GPIOA Configuration: TIM3 Channel 1 as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
/* Compute the prescaler value */
PrescalerValue = (uint16_t) (SystemCoreClock / 24000000) - 1;
/* Time base configuration */
TIM_TimeBaseStructure.TIM_Period = 29; // 800kHz
TIM_TimeBaseStructure.TIM_Prescaler = PrescalerValue;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);
/* PWM1 Mode configuration: Channel1 */
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = 0;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OC1Init(TIM3, &TIM_OCInitStructure);
/* configure DMA */
/* DMA clock enable */
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
/* DMA1 Channel6 Config */
DMA_DeInit(DMA1_Channel6);
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)TIM3_CCR1_Address; // physical address of Timer 3 CCR1
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)LED_BYTE_Buffer; // this is the buffer memory
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST; // data shifted from memory to peripheral
DMA_InitStructure.DMA_BufferSize = 42;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; // automatically increase buffer index
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal; // stop DMA feed after buffer size is reached
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel6, &DMA_InitStructure);
/* TIM3 CC1 DMA Request enable */
TIM_DMACmd(TIM3, TIM_DMA_CC1, ENABLE);
DMA_ITConfig(DMA1_Channel6, DMA_IT_TC, ENABLE);
NVIC_InitStructure.NVIC_IRQChannel = DMA1_Channel6_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 2;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
}
volatile uint8_t ws2811LedDataTransferInProgress = 0;
void DMA1_Channel6_IRQHandler(void)
{
if (DMA_GetFlagStatus(DMA1_FLAG_TC6)) {
ws2811LedDataTransferInProgress = 0;
DMA_Cmd(DMA1_Channel6, DISABLE); // disable DMA channel 6
DMA_ClearFlag(DMA1_FLAG_TC6); // clear DMA1 Channel 6 transfer complete flag
}
}
/* This function sends data bytes out to a string of WS2812s
* The first argument is a pointer to the first RGB triplet to be sent
* The seconds argument is the number of LEDs in the chain
*
* This will result in the RGB triplet passed by argument 1 being sent to
* the LED that is the furthest away from the controller (the point where
* data is injected into the chain)
*
* this method is non-blocking unless an existing LED update is in progress.
* it does not wait until all the LEDs have been updated, that happens in the background.
*/
void WS2812_send(uint8_t (*color)[3], uint16_t len)
{
uint8_t i,j;
uint8_t led;
uint16_t memaddr;
uint16_t buffersize;
while(ws2811LedDataTransferInProgress); // wait until previous transfer completes
buffersize = (len*24)+42; // number of bytes needed is #LEDs * 24 bytes + 42 trailing bytes
memaddr = 0; // reset buffer memory index
led = 0; // reset led index
// fill transmit buffer with correct compare values to achieve
// correct pulse widths according to color values
while (len)
{
for (j = 0; j <
8
; j++) // GREEN data
{
if ( (color[led][1]<<j) & 0x80 ) // data sent MSB first,
j
=
0
is MSB
j
=
7
is LSB
{
LED_BYTE_Buffer[memaddr] = 17; // compare value for logical 1
}
else
{
LED_BYTE_Buffer[memaddr] = 9; // compare value for logical 0
}
memaddr++;
}
for (
j
=
0
; j < 8; j++) // RED data
{
if ( (color[led][0]<<j) & 0x80 ) // data sent MSB first,
j
=
0
is MSB
j
=
7
is LSB
{
LED_BYTE_Buffer[memaddr] = 17; // compare value for logical 1
}
else
{
LED_BYTE_Buffer[memaddr] = 9; // compare value for logical 0
}
memaddr++;
}
for (
j
=
0
; j < 8; j++) // BLUE data
{
if ( (color[led][2]<<j) & 0x80 ) // data sent MSB first,
j
=
0
is MSB
j
=
7
is LSB
{
LED_BYTE_Buffer[memaddr] = 17; // compare value for logical 1
}
else
{
LED_BYTE_Buffer[memaddr] = 9; // compare value for logical 0
}
memaddr++;
}
led++;
len--;
}
// add needed delay at end of byte cycle,
pulsewidth
=
0
while(memaddr < buffersize)
{
LED_BYTE_Buffer[memaddr] = 0;
memaddr++;
}
ws2811LedDataTransferInProgress
= 1;
DMA_SetCurrDataCounter(DMA1_Channel6, buffersize); // load number of bytes to be transferred
TIM_SetCounter(TIM3, 0);
TIM_Cmd(TIM3, ENABLE); // enable Timer 3
DMA_Cmd(DMA1_Channel6, ENABLE); // enable DMA channel 6
}
int main(void) {
int16_t i;
int16_t idleCounter;
Timer3_init();
while (1){
/* first cycle through the colors on the LEDs chained together
* last LED in the chain will receive first sent triplet
* --> last LED in the chain will 'lead'
*/
GPIO_SetBits(GPIOC, GPIO_Pin_13);
for (i = 0; i < 766 - NUM_LEDS; i += 1)
{
WS2812_send(&eightbit[i], NUM_LEDS);
idleCounter = 0;
while(ws2811LedDataTransferInProgress) {
// the main loop is free to do other work while the LEDs are being updated, such as updating this idle counter
idleCounter++;
}
Delay(5000L);
}
}
TIM_Cmd(TIM3, DISABLE); // disable Timer 3
}