
Authors:

International Business Machines Corporation (IBM)
Eurotech

MQ Telemetry Transport (MQTT) is a lightweight broker-based publish/subscribe
messaging protocol designed to be open, simple, lightweight and easy to implement.
These characteristics make it ideal for use in constrained environments, for example,
but not limited to:

Where the network is expensive, has low bandwidth or is unreliable
When run on an embedded device with limited processor or memory resources

Features of the protocol include:

The publish/subscribe message pattern to provide one-to-many message
distribution and decoupling of applications
A messaging transport that is agnostic to the content of the payload
The use of TCP/IP to provide basic network connectivity
Three qualities of service for message delivery:

"At most once", where messages are delivered according to the best efforts of
the underlying TCP/IP network. Message loss or duplication can occur. This
level could be used, for example, with ambient sensor data where it does not
matter if an individual reading is lost as the next one will be published soon
after.
"At least once", where messages are assured to arrive but duplicates may
occur.
"Exactly once", where message are assured to arrive exactly once. This level
could be used, for example, with billing systems where duplicate or lost
messages could lead to incorrect charges being applied.

A small transport overhead (the fixed-length header is just 2 bytes), and protocol
exchanges minimised to reduce network traffic
A mechanism to notify interested parties to an abnormal disconnection of a client
using the Last Will and Testament feature

© 1999-2010 Eurotech, International Business Machines Corporation (IBM). All rights

MQTT V3.1 Protocol Specification

1 of 42

reserved.

Permission to copy and display the MQ Telemetry Transport specification (the
"Specification"), in any medium without fee or royalty is hereby granted by Eurotech
and International Business Machines Corporation (IBM) (collectively, the "Authors"),
provided that you include the following on ALL copies of the Specification, or portions
thereof, that you make:

A link or URL to the Specification at one of the Authors' websites.1.
The copyright notice as shown in the Specification.2.

The Authors each agree to grant you a royalty-free license, under reasonable,
non-discriminatory terms and conditions to their respective patents that they deem
necessary to implement the Specification. THE SPECIFICATION IS PROVIDED "AS IS,"
AND THE AUTHORS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE
CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY
PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS. THE AUTHORS WILL NOT
BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR DISTRIBUTION OF THE
SPECIFICATION.

The name and trademarks of the Authors may NOT be used in any manner, including
advertising or publicity pertaining to the Specification or its contents without specific,
written prior permission. Title to copyright in the Specification will at all times remain
with the Authors.

No other rights are granted by implication, estoppel or otherwise.

MQTT V3.1 Protocol Specification

2 of 42

This specification is split into three main sections:

the message format that is common to all packet types,
the specific details of each packet type,
how the packets flow between client and server.

Information on how topic wildcards are used is provided in the appendix.

The following are the changes between MQTT V3 and MQTT V3.1:

User name and password can now be sent with a CONNECT packet
New return codes on CONNACK packets, for security problems
Clarification that clients are not informed of un-authorized PUBLISH or SUBSCRIBE
commands, and that the normal MQTT flow should complete even though the
command has not been performed.
Strings in MQTT now support full UTF-8, instead of just the US-ASCII subset.

The protocol version number passed with CONNECT packets, is unchanged for this
revision, and remains as the "3". Existing MQTT V3 server implementations should be
able to accept connections from clients that support this revision, as long as they
correctly respect the "Remaining Length" field, and therefore ignore the extra security
information.

MQTT V3.1 Protocol Specification

3 of 42

The message header for each MQTT command message contains a fixed header. Some
messages also require a variable header and a payload. The format for each part of the
message header is described in the following sections:

The message header for each MQTT command message contains a fixed header. The
table below shows the fixed header format.

bit 7 6 5 4 3 2 1 0

byte 1 Message Type DUP flag QoS level RETAIN

byte 2 Remaining Length

Byte 1

Contains the Message Type and Flags (DUP, QoS level, and RETAIN) fields.

Byte 2

(At least one byte) contains the Remaining Length field.

The fields are described in the following sections. All data values are in big-endian
order: higher order bytes precede lower order bytes. A 16-bit word is presented on the
wire as Most Significant Byte (MSB), followed by Least Significant Byte (LSB).

Message Type

Position: byte 1, bits 7-4.

Represented as a 4-bit unsigned value. The enumerations for this version of the
protocol are shown in the table below.

Mnemonic Enumeration Description

Reserved 0 Reserved

CONNECT 1 Client request to connect to Server

CONNACK 2 Connect Acknowledgment

PUBLISH 3 Publish message

PUBACK 4 Publish Acknowledgment

MQTT V3.1 Protocol Specification

4 of 42

Mnemonic Enumeration Description

PUBREC 5 Publish Received (assured delivery part 1)

PUBREL 6 Publish Release (assured delivery part 2)

PUBCOMP 7 Publish Complete (assured delivery part 3)

SUBSCRIBE 8 Client Subscribe request

SUBACK 9 Subscribe Acknowledgment

UNSUBSCRIBE 10 Client Unsubscribe request

UNSUBACK 11 Unsubscribe Acknowledgment

PINGREQ 12 PING Request

PINGRESP 13 PING Response

DISCONNECT 14 Client is Disconnecting

Reserved 15 Reserved

Flags

The remaining bits of byte 1 contain the fields DUP, QoS, and RETAIN. The bit positions
are encoded to represent the flags as shown in the table below.

Bit position Name Description

3 DUP Duplicate delivery

2-1 QoS Quality of Service

0 RETAIN RETAIN flag

DUP

Position: byte 1, bit 3.

This flag is set when the client or server attempts to re-deliver a PUBLISH,
PUBREL, SUBSCRIBE or UNSUBSCRIBE message. This applies to messages where
the value of QoS is greater than zero (0), and an acknowledgment is required.
When the DUP bit is set, the variable header includes a Message ID.

The recipient should treat this flag as a hint as to whether the message may have
been previously received. It should not be relied on to detect duplicates.

QoS

Position: byte 1, bits 2-1.

This flag indicates the level of assurance for delivery of a PUBLISH message. The
QoS levels are shown in the table below.

MQTT V3.1 Protocol Specification

5 of 42

QoS value bit 2 bit 1 Description

0 0 0 At most once Fire and Forget <=1

1 0 1 At least once Acknowledged delivery >=1

2 1 0 Exactly once Assured delivery =1

3 1 1 Reserved

RETAIN

Position: byte 1, bit 0.

This flag is only used on PUBLISH messages. When a client sends a PUBLISH to a
server, if the Retain flag is set (1), the server should hold on to the message after
it has been delivered to the current subscribers.

When a new subscription is established on a topic, the last retained message on
that topic should be sent to the subscriber with the Retain flag set. If there is no
retained message, nothing is sent

This is useful where publishers send messages on a "report by exception" basis,
where it might be some time between messages. This allows new subscribers to
instantly receive data with the retained, or Last Known Good, value.

When a server sends a PUBLISH to a client as a result of a subscription that
already existed when the original PUBLISH arrived, the Retain flag should not be
set, regardless of the Retain flag of the original PUBLISH. This allows a client to
distinguish messages that are being received because they were retained and
those that are being received "live".

Retained messages should be kept over restarts of the server.

A server may delete a retained message if it receives a message with a zero-length
payload and the Retain flag set on the same topic.

Remaining Length

Position: byte 2.

Represents the number of bytes remaining within the current message, including data in
the variable header and the payload.

The variable length encoding scheme uses a single byte for messages up to 127 bytes
long. Longer messages are handled as follows. Seven bits of each byte encode the
Remaining Length data, and the eighth bit indicates any following bytes in the
representation. Each byte encodes 128 values and a "continuation bit". For example,
the number 64 decimal is encoded as a single byte, decimal value 64, hex 0x40. The
number 321 decimal (= 65 + 2*128) is encoded as two bytes, least significant first. The
first byte 65+128 = 193. Note that the top bit is set to indicate at least one following
byte. The second byte is 2.

MQTT V3.1 Protocol Specification

6 of 42

The protocol limits the number of bytes in the representation to a maximum of four.
This allows applications to send messages of up to 268 435 455 (256 MB). The
representation of this number on the wire is: 0xFF, 0xFF, 0xFF, 0x7F.

The table below shows the Remaining Length values represented by increasing numbers
of bytes.

Digits From To

1 0 (0x00) 127 (0x7F)

2 128 (0x80, 0x01) 16 383 (0xFF, 0x7F)

3 16 384 (0x80, 0x80, 0x01) 2 097 151 (0xFF, 0xFF, 0x7F)

4 2 097 152 (0x80, 0x80, 0x80, 0x01) 268 435 455 (0xFF, 0xFF, 0xFF, 0x7F)

The algorithm for encoding a decimal number (X) into the variable length encoding
scheme is as follows:

do
 digit = X MOD 128
 X = X DIV 128
 // if there are more digits to encode, set the top bit of this digit
 if (X > 0)
 digit = digit OR 0x80
 endif
 'output' digit
while (X> 0)

where MOD is the modulo operator (% in C), DIV is integer division (/ in C), and OR is
bit-wise or (| in C).

The algorithm for decoding the Remaining Length field is as follows:

multiplier = 1
value = 0
do
 digit = 'next digit from stream'
 value += (digit AND 127) * multiplier
 multiplier *= 128
while ((digit AND 128) != 0)

where AND is the bit-wise and operator (& in C).

When this algorithm terminates, value contains the Remaining Length in bytes.

Remaining Length encoding is not part of the variable header. The number of bytes
used to encode the Remaining Length does not contribute to the value of the Remaining
Length. The variable length "extension bytes" are part of the fixed header, not the
variable header.

MQTT V3.1 Protocol Specification

7 of 42

Some types of MQTT command messages also contain a variable header component. It
resides between the fixed header and the payload.

The variable length Remaining Length field is not part of the variable header. The bytes
of the Remaining Length field do not contribute to the byte count of the Remaining
Length value. This value only takes account of the variable header and the payload. See
Fixed header for more information.

The format of the variable header fields are described in the following sections, in the
order in which they must appear in the header:

Protocol name

The protocol name is present in the variable header of a MQTT CONNECT message. This
field is a UTF-encoded string that represents the protocol name MQIsdp, capitalized as
shown.

Protocol version

The protocol version is present in the variable header of a CONNECT message.

The field is an 8-bit unsigned value that represents the revision level of the protocol
used by the client. The value of the Protocol version field for the current version of the
protocol, 3 (0x03), is shown in the table below.

bit 7 6 5 4 3 2 1 0

Protocol Version

0 0 0 0 0 0 1 1

Connect flags

The Clean session, Will, Will QoS, and Retain flags are present in the variable header of
a CONNECT message.

Clean session flag

Position: bit 1 of the Connect flags byte.

If not set (0), then the server must store the subscriptions of the client after it
disconnects. This includes continuing to store QoS 1 and QoS 2 messages for the
subscribed topics so that they can be delivered when the client reconnects. The server
must also maintain the state of in-flight messages being delivered at the point the
connection is lost. This information must be kept until the client reconnects.

If set (1), then the server must discard any previously maintained information about the
client and treat the connection as "clean". The server must also discard any state when
the client disconnects.

MQTT V3.1 Protocol Specification

8 of 42

Typically, a client will operate in one mode or the other and not change. The choice will
depend on the application. A clean session client will not receive stale information and it
must resubscribe each time it connects. A non-clean session client will not miss any
QoS 1 or QoS 2 messages that were published whilst it was disconnected. QoS 0
messages are never stored, since they are delivered on a best efforts basis.

This flag was formerly known as "Clean start". It has been renamed to clarify the fact it
applies to the whole session and not just to the initial connect.

A server may provide an administrative mechanism for clearing stored information
about a client which can be used when it is known that a client will never reconnect.

bit 7 6 5 4 3 2 1 0

User Name
Flag

Password
Flag

Will
Retain

Will
QoS

Will
Flag

Clean
Session

Reserved

x x x x x x x

Bit 0 of this byte is not used in the current version of the protocol. It is reserved for
future use.

Will flag

Position: bit 2 of the Connect flags byte.

The Will message defines that a message is published on behalf of the client by the
server when either an I/O error is encountered by the server during communication
with the client, or the client fails to communicate within the Keep Alive timer schedule.
Sending a Will message is not triggered by the server receiving a DISCONNECT
message from the client.

If the Will flag is set, the Will QoS and Will Retain fields must be present in the Connect
flags byte, and the Will Topic and Will Message fields must be present in the payload.

The format of the Will flag is shown in the table below.

bit 7 6 5 4 3 2 1 0

User Name
Flag

Password
Flag

Will
Retain

Will
QoS

Will
Flag

Clean
Session

Reserved

x x x x x x x

Bit 0 of this byte is not used in the current version of the protocol. It is reserved for
future use.

Will QoS

Position: bits 4 and 3 of the Connect flags byte.

MQTT V3.1 Protocol Specification

9 of 42

A connecting client specifies the QoS level in the Will QoS field for a Will message that is
sent in the event that the client is disconnected involuntarily. The Will message is
defined in the payload of a CONNECT message.

If the Will flag is set, the Will QoS field is mandatory, otherwise its value is disregarded.

The value of Will QoS is 0 (0x00), 1 (0x01), or 2 (0x02). The Will QoS flag is shown in
the table below.

bit 7 6 5 4 3 2 1 0

User Name
Flag

Password
Flag

Will
Retain

Will
QoS

Will
Flag

Clean
Session

Reserved

x x x 1 x x

Bit 0 of this byte is not used in the current version of the protocol. It is reserved for
future use.

Will Retain flag

Position: bit 5 of the Connect flags byte.

The Will Retain flag indicates whether the server should retain the Will message which is
published by the server on behalf of the client in the event that the client is
disconnected unexpectedly.

The Will Retain flag is mandatory if the Will flag is set, otherwise, it is disregarded. The
format of the Will Retain flag is shown in the table below.

bit 7 6 5 4 3 2 1 0

User Name
Flag

Password
Flag

Will
Retain

Will
QoS

Will
Flag

Clean
Session

Reserved

x x x x 1 x x

Bit 0 of this byte is not used in the current version of the protocol. It is reserved for
future use.

User name and password flags

Position: bits 6 and 7 of the Connect flags byte.

A connecting client can specify a user name and a password, and setting the flag bits
signifies that a User Name, and optionally a password, are included in the payload of a
CONNECT message.

If the User Name flag is set, the User Name field is mandatory, otherwise its value is
disregarded. If the Password flag is set, the Password field is mandatory, otherwise its
value is disregarded. It is not valid to supply a password without supplying a user

MQTT V3.1 Protocol Specification

10 of 42

name.

bit 7 6 5 4 3 2 1 0

User Name
Flag

Password
Flag

Will
Retain

Will
QoS

Will
Flag

Clean
Session Reserved

x x x x x x

Bit 0 of this byte is not used in the current version of the protocol. It is reserved for
future use.

Keep Alive timer

The Keep Alive timer is present in the variable header of a MQTT CONNECT message.

The Keep Alive timer, measured in seconds, defines the maximum time interval between
messages received from a client. It enables the server to detect that the network
connection to a client has dropped, without having to wait for the long TCP/IP timeout.
The client has a responsibility to send a message within each Keep Alive time period. In
the absence of a data-related message during the time period, the client sends a
PINGREQ message, which the server acknowledges with a PINGRESP message.

If the server does not receive a message from the client within one and a half times the
Keep Alive time period (the client is allowed "grace" of half a time period), it disconnects
the client as if the client had sent a DISCONNECT message. This action does not impact
any of the client's subscriptions. See DISCONNECT for more details.

If a client does not receive a PINGRESP message within a Keep Alive time period after
sending a PINGREQ, it should close the TCP/IP socket connection.

The Keep Alive timer is a 16-bit value that represents the number of seconds for the
time period. The actual value is application-specific, but a typical value is a few minutes.
The maximum value is approximately 18 hours. A value of zero (0) means the client is
not disconnected.

The format of the Keep Alive timer is shown in the table below. The ordering of the 2
bytes of the Keep Alive Timer is MSB, then LSB (big-endian).

bit 7 6 5 4 3 2 1 0

Keep Alive MSB

Keep Alive LSB

Connect return code

The connect return code is sent in the variable header of a CONNACK message.

This field defines a one byte unsigned return code. The meanings of the values, shown
in the tables below, are specific to the message type. A return code of zero (0) usually

MQTT V3.1 Protocol Specification

11 of 42

indicates success.

Enumeration HEX Meaning

0 0x00 Connection Accepted

1 0x01 Connection Refused: unacceptable protocol version

2 0x02 Connection Refused: identifier rejected

3 0x03 Connection Refused: server unavailable

4 0x04 Connection Refused: bad user name or password

5 0x05 Connection Refused: not authorized

6-255 Reserved for future use

bit 7 6 5 4 3 2 1 0

Return Code

Topic name

The topic name is present in the variable header of an MQTT PUBLISH message.

The topic name is the key that identifies the information channel to which payload data
is published. Subscribers use the key to identify the information channels on which they
want to receive published information.

The topic name is a UTF-encoded string. See the section on MQTT and UTF-8 for more
information. Topic name has an upper length limit of 32,767 characters.

The following types of MQTT command message have a payload:

CONNECT

The payload contains one or more UTF-8 encoded strings. They specify a unqiue
identifier for the client, a Will topic and message and the User Name and Password
to use. All but the first are optional and their presence is determined based on flags
in the variable header.

SUBSCRIBE

The payload contains a list of topic names to which the client can subscribe, and
the QoS level. These strings are UTF-encoded.

SUBACK

The payload contains a list of granted QoS levels. These are the QoS levels at

MQTT V3.1 Protocol Specification

12 of 42

which the administrators for the server have permitted the client to subscribe to a
particular Topic Name. Granted QoS levels are listed in the same order as the topic
names in the corresponding SUBSCRIBE message.

The payload part of a PUBLISH message contains application-specific data only. No
assumptions are made about the nature or content of the data, and this part of the
message is treated as a BLOB.

If you want an application to apply compression to the payload data, you need to define
in the application the appropriate payload flag fields to handle the compression details.
You cannot define application-specific flags in the fixed or variable headers.

The message identifier is present in the variable header of the following MQTT
messages: PUBLISH, PUBACK, PUBREC, PUBREL, PUBCOMP, SUBSCRIBE, SUBACK,
UNSUBSCRIBE, UNSUBACK.

The Message Identifier (Message ID) field is only present in messages where the QoS
bits in the fixed header indicate QoS levels 1 or 2. See section on Quality of Service
levels and flows for more information.

The Message ID is a 16-bit unsigned integer that must be unique amongst the set of "in
flight" messages in a particular direction of communication. It typically increases by
exactly one from one message to the next, but is not required to do so.

A client will maintain its own list of Message IDs separate to the Message IDs used by
the server it is connected to. It is possible for a client to send a PUBLISH with Message
ID 1 at the same time as receiving a PUBLISH with Message ID 1.

The ordering of the two bytes of the Message Identifier is MSB, then LSB (big-endian).

Do not use Message ID 0. It is reserved as an invalid Message ID.

bit 7 6 5 4 3 2 1 0

Message Identifier MSB

Message Identifier LSB

UTF-8 is an efficient encoding of Unicode character-strings that optimizes the encoding
of ASCII characters in support of text-based communications.

In MQTT, strings are prefixed with two bytes to denote the length, as shown in the table
below.

MQTT V3.1 Protocol Specification

13 of 42

bit 7 6 5 4 3 2 1 0

byte 1 String Length MSB

byte 2 String Length LSB

bytes 3 ... Encoded Character Data

String Length is the number of bytes of encoded string characters, not the number of
characters. For example, the string OTWP is encoded in UTF-8 as shown in the table
below.

bit 7 6 5 4 3 2 1 0

byte 1 Message Length MSB (0x00)

0 0 0 0 0 0 0 0

byte 2 Message Length LSB (0x04)

0 0 0 0 0 1 0 0

byte 3 'O' (0x4F)

0 1 0 0 1 1 1 1

byte 4 'T' (0x54)

0 1 0 1 0 1 0 0

byte 5 'W' (0x57)

0 1 0 1 0 1 1 1

byte 6 'P' (0x50)

0 1 0 1 0 0 0 0

The Java writeUTF() and readUTF() data stream methods use this format.

Any bits marked as unused should be set to zero (0).

MQTT V3.1 Protocol Specification

14 of 42

When a TCP/IP socket connection is established from a client to a server, a protocol
level session must be created using a CONNECT flow.

Fixed header

The fixed header format is shown in the table below.

bit 7 6 5 4 3 2 1 0

byte 1 Message Type (1) DUP flag QoS level RETAIN

0 0 0 1 x x x x

byte 2 Remaining Length

The DUP, QoS, and RETAIN flags are not used in the CONNECT message.

Remaining Length is the length of the variable header (12 bytes) and the length of the
Payload. This can be a multibyte field.

Variable header

An example of the format of the variable header is shown in the table below.

Description 7 6 5 4 3 2 1 0

Protocol Name

byte 1 Length MSB (0) 0 0 0 0 0 0 0 0

byte 2 Length LSB (6) 0 0 0 0 0 1 1 0

byte 3 'M' 0 1 0 0 1 1 0 1

byte 4 'Q' 0 1 0 1 0 0 0 1

byte 5 'I' 0 1 0 0 1 0 0 1

byte 6 's' 0 1 1 1 0 0 1 1

byte 7 'd' 0 1 1 0 0 1 0 0

byte 8 'p' 0 1 1 1 0 0 0 0

Protocol Version Number

MQTT V3.1 Protocol Specification

15 of 42

Description 7 6 5 4 3 2 1 0

byte 9 Version (3) 0 0 0 0 0 0 1 1

Connect Flags

byte 10

User name flag (1)
Password flag (1)
Will RETAIN (0)
Will QoS (01)
Will flag (1)
Clean Session (1)

1 1 0 0 1 1 1 x

Keep Alive timer

byte 11 Keep Alive MSB (0) 0 0 0 0 0 0 0 0

byte 12 Keep Alive LSB (10) 0 0 0 0 1 0 1 0

User name flag

Set (1).

Password flag

Set (1).

Clean Session flag

Set (1).

Keep Alive timer

Set to 10 seconds (0x000A).

Will message

Will flag is set (1)
Will QoS field is 1
Will RETAIN flag is clear (0)

Payload

The payload of the CONNECT message contains one or more UTF-8 encoded strings,
based on the flags in the variable header. The strings, if present, must appear in the
following order:

Client Identifier

The first UTF-encoded string. The Client Identifier (Client ID) is between 1 and 23
characters long, and uniquely identifies the client to the server. It must be unique
across all clients connecting to a single server, and is the key in handling Message
IDs messages with QoS levels 1 and 2. If the Client ID contains more than 23
characters, the server responds to the CONNECT message with a CONNACK return
code 2: Identifier Rejected.

MQTT V3.1 Protocol Specification

16 of 42

Will Topic

If the Will Flag is set, this is the next UTF-8 encoded string. The Will Message is
published to the Will Topic. The QoS level is defined by the Will QoS field, and the
RETAIN status is defined by the Will RETAIN flag in the variable header.

Will Message

If the Will Flag is set, this is the next UTF-8 encoded string. The Will Message
defines the content of the message that is published to the Will Topic if the client is
unexpectedly disconnected. This may be a zero-length message.

Although the Will Message is UTF-8 encoded in the CONNECT message, when it is
published to the Will Topic only the bytes of the message are sent, not the first two
length bytes. The message must therefore only consist of 7-bit ASCII characters.

User Name

If the User Name flag is set, this is the next UTF-encoded string. The user name
identifies the name of the user who is connecting, which can be used for
authentication. It is recommended that user names are kept to 12 characters or
fewer, but it is not required.

Note that, for compatibility with the original MQTT V3 specification, the Remaining
Length field from the fixed header takes precedence over the User Name flag.
Server implementations must allow for the possibility that the User Name flag is
set, but the User Name string is missing. This is valid, and connections should be
allowed to continue.

Password

If the Password flag is set, this is the next UTF-encoded string. The password
corresponding to the user who is connecting, which can be used for
authentication. It is recommended that passwords are kept to 12 characters or
fewer, but it is not required.

Note that, for compatibility with the original MQTT V3 specification, the Remaining
Length field from the fixed header takes precedence over the Password flag. Server
implementations must allow for the possibility that the Password flag is set, but the
Password string is missing. This is valid, and connections should be allowed to
continue.

Response

The server sends a CONNACK message in response to a CONNECT message from a
client.

If the server does not receive a CONNECT message within a reasonable amount of time
after the TCP/IP connection is established, the server should close the connection.

If the client does not receive a CONNACK message from the server within a reasonable

MQTT V3.1 Protocol Specification

17 of 42

amount of time, the client should close the TCP/IP socket connection, and restart the
session by opening a new socket to the server and issuing a CONNECT message.

In both of these scenarios, a "reasonable" amount of time depends on the type of
application and the communications infrastructure.

If a client with the same Client ID is already connected to the server, the "older" client
must be disconnected by the server before completing the CONNECT flow of the new
client.

If the client sends an invalid CONNECT message, the server should close the
connection. This includes CONNECT messages that provide invalid Protocol Name or
Protocol Version Numbers. If the server can parse enough of the CONNECT message to
determine that an invalid protocol has been requested, it may try to send a CONNACK
containing the "Connection Refused: unacceptable protocol version" code before
dropping the connection.

The CONNACK message is the message sent by the server in response to a CONNECT
request from a client.

Fixed header

The fixed header format is shown in the table below.

bit 7 6 5 4 3 2 1 0

byte 1 Message type (2) DUP flag QoS flags RETAIN

0 0 1 0 x x x x

byte 2 Remaining Length (2)

0 0 0 0 0 0 1 0

The DUP, QoS and RETAIN flags are not used in the CONNACK message.

Variable header

The variable header format is shown in the table below.

Description 7 6 5 4 3 2 1 0

Topic Name Compression Response

byte 1 Reserved values. Not used. x x x x x x x x

Connect Return Code

MQTT V3.1 Protocol Specification

18 of 42

Description 7 6 5 4 3 2 1 0

byte 2 Return Code

The values for the one byte unsigned Connect return code field are shown in the table
below.

Enumeration HEX Meaning

0 0x00 Connection Accepted

1 0x01 Connection Refused: unacceptable protocol version

2 0x02 Connection Refused: identifier rejected

3 0x03 Connection Refused: server unavailable

4 0x04 Connection Refused: bad user name or password

5 0x05 Connection Refused: not authorized

6-255 Reserved for future use

Return code 2 (identifier rejected) is sent if the unique client identifier is not between 1
and 23 characters in length.

Payload

There is no payload.

A PUBLISH message is sent by a client to a server for distribution to interested
subscribers. Each PUBLISH message is associated with a topic name (also known as the
Subject or Channel). This is a hierarchical name space that defines a taxonomy of
information sources for which subscribers can register an interest. A message that is
published to a specific topic name is delivered to connected subscribers for that topic.

If a client subscribes to one or more topics, any message published to those topics are
sent by the server to the client as a PUBLISH message.

Fixed header

The table below shows the fixed header format.

bit 7 6 5 4 3 2 1 0

byte 1 Message type (3) DUP flag QoS level RETAIN

0 0 1 1 0 0 1 0

MQTT V3.1 Protocol Specification

19 of 42

bit 7 6 5 4 3 2 1 0

byte 2 Remaining Length

QoS level

Set to 1. See QoS for more details.

DUP flag

Set to zero (0). This means that the message is being sent for the first time. See
DUP for more details.

RETAIN flag

Set to zero. This means do not retain. See Retain for more details.

Remaining Length field

The length of the variable header plus the length of the payload. It can be a
multibyte field.

Variable header

The variable header contains the following fields:

Topic name

A UTF-encoded string.

This must not contain Topic wildcard characters.

When received by a client that subscribed using wildcard characters, this string will
be the absolute topic specified by the originating publisher and not the subscription
string used by the client.

Message ID

Present for messages with QoS level 1 and QoS level 2. See Message identifiers for
more details.

The table below shows an example variable header for a PUBLISH message.

Field Value

Topic Name: "a/b"

QoS level 1

Message ID: 10

The format of the variable header in this case is shown in the table below.

Description 7 6 5 4 3 2 1 0

MQTT V3.1 Protocol Specification

20 of 42

Description 7 6 5 4 3 2 1 0

Topic Name

byte 1 Length MSB (0) 0 0 0 0 0 0 0 0

byte 2 Length LSB (3) 0 0 0 0 0 0 1 1

byte 3 'a' (0x61) 0 1 1 0 0 0 0 1

byte 4 '/' (0x2F) 0 0 1 0 1 1 1 1

byte 5 'b' (0x62) 0 1 1 0 0 0 1 0

Message Identifier

byte 6 Message ID MSB (0) 0 0 0 0 0 0 0 0

byte 7 Message ID LSB (10) 0 0 0 0 1 0 1 0

Payload

Contains the data for publishing. The content and format of the data is application
specific. The Remaining Length field in the fixed header includes both the variable
header length and the payload length. As such, it is valid for a PUBLISH to contain a
0-length payload.

Response

The response to a PUBLISH message depends on the QoS level. The table below shows
the expected responses.

QoS Level Expected response

QoS 0 None

QoS 1 PUBACK

QoS 2 PUBREC

Actions

PUBLISH messages can be sent either from a publisher to the server, or from the server
to a subscriber. The action of the recipient when it receives a message depends on the
QoS level of the message:

QoS 0

Make the message available to any interested parties.

QoS 1

Log the message to persistent storage, make it available to any interested parties,
and return a PUBACK message to the sender.

MQTT V3.1 Protocol Specification

21 of 42

QoS 2

Log the message to persistent storage, do not make it available to interested
parties yet, and return a PUBREC message to the sender.

If the server receives the message, interested parties means subscribers to the topic of
the PUBLISH message. If a subscriber receives the message, interested parties means
the application on the client which has subscribed to one or more topics, and is waiting
for a message from the server.

See Quality of Service levels and flows for more details.

Note that if a server implementation does not authorize a PUBLISH to be made by a
client, it has no way of informing that client. It must therefore make a positive
acknowledgement, according to the normal QoS rules, and the client will not be
informed that it was not authorized to publish the message.

A PUBACK message is the response to a PUBLISH message with QoS level 1. A PUBACK
message is sent by a server in response to a PUBLISH message from a publishing client,
and by a subscriber in response to a PUBLISH message from the server.

Fixed header

The table below shows the format of the fixed header.

bit 7 6 5 4 3 2 1 0

byte 1 Message Type (4) DUP flag QoS level RETAIN

0 1 0 0 x x x x

byte 2 Remaining Length (2)

0 0 0 0 0 0 1 0

QoS level

Not used.

DUP flag

Not used.

RETAIN flag

Not used.

Remaining Length field

This is the length of the variable header (2 bytes). It can be a multibyte field.

MQTT V3.1 Protocol Specification

22 of 42

Variable header

Contains the Message Identifier (Message ID) for the PUBLISH message that is being
acknowledged. The table below shows the format of the variable header.

bit 7 6 5 4 3 2 1 0

byte 1 Message ID MSB

byte 2 Message ID LSB

Payload

There is no payload.

Actions

When the client receives the PUBACK message, it discards the original message,
because it is also received (and logged) by the server.

A PUBREC message is the response to a PUBLISH message with QoS level 2. It is the
second message of the QoS level 2 protocol flow. A PUBREC message is sent by the
server in response to a PUBLISH message from a publishing client, or by a subscriber in
response to a PUBLISH message from the server.

Fixed header

The table below shows the fixed header format.

bit 7 6 5 4 3 2 1 0

byte 1 Message Type (5) DUP flag QoS level RETAIN

0 1 0 1 x x x x

byte 2 Remaining Length (2)

0 0 0 0 0 0 1 0

QoS level

Not used.

DUP flag

Not used.

RETAIN flag

MQTT V3.1 Protocol Specification

23 of 42

Not used.

Remaining Length field

The length of the variable header (2 bytes). It can be a multibyte field.

Variable header

The variable header contains the Message ID for the acknowledged PUBLISH. The table
below shows the format of the variable header.

bit 7 6 5 4 3 2 1 0

byte 1 Message ID MSB

byte 2 Message ID LSB

Payload

There is no payload.

Actions

When it receives a PUBREC message, the recipient sends a PUBREL message to the
sender with the same Message ID as the PUBREC message.

A PUBREL message is the response either from a publisher to a PUBREC message from
the server, or from the server to a PUBREC message from a subscriber. It is the third
message in the QoS 2 protocol flow.

Fixed header

The table below shows the fixed header format.

bit 7 6 5 4 3 2 1 0

byte 1 Message Type (6) DUP flag QoS level RETAIN

0 1 1 0 0 0 1 x

byte 2 Remaining Length (2)

0 0 0 0 0 0 1 0

QoS level

PUBREL messages use QoS level 1 as an acknowledgement is expected in the form
of a PUBCOMP. Retries are handled in the same way as PUBLISH messages.

MQTT V3.1 Protocol Specification

24 of 42

DUP flag

Set to zero (0). This means that the message is being sent for the first time. See
DUP for more details.

RETAIN flag

Not used.

Remaining Length field

The length of the variable header (2 bytes). It can be a multibyte field.

Variable header

The variable header contains the same Message ID as the PUBREC message that is
being acknowledged. The table below shows the format of the variable header.

bit 7 6 5 4 3 2 1 0

byte 1 Message ID MSB

byte 2 Message ID LSB

Payload

There is no payload.

Actions

When the server receives a PUBREL message from a publisher, the server makes the
original message available to interested subscribers, and sends a PUBCOMP message
with the same Message ID to the publisher. When a subscriber receives a PUBREL
message from the server, the subscriber makes the message available to the
subscribing application and sends a PUBCOMP message to the server.

This message is either the response from the server to a PUBREL message from a
publisher, or the response from a subscriber to a PUBREL message from the server. It
is the fourth and last message in the QoS 2 protocol flow.

Fixed header

The table below shows the fixed header format.

bit 7 6 5 4 3 2 1 0

byte 1 Message Type (7) DUP flag QoS level RETAIN

MQTT V3.1 Protocol Specification

25 of 42

bit 7 6 5 4 3 2 1 0

0 1 1 1 x x x x

byte 2 Remaining Length (2)

0 0 0 0 0 0 1 0

QoS level

Not used.

DUP flag

Not used.

RETAIN flag

Not used.

Remaining Length field

The length of the variable header (2 bytes). It can be a multibyte field.

Variable header

The variable header contains the same Message ID as the acknowledged PUBREL
message.

bit 7 6 5 4 3 2 1 0

byte 1 Message ID MSB

byte 2 Message ID LSB

Payload

There is no payload.

Actions

When the client receives a PUBCOMP message, it discards the original message because
it has been delivered, exactly once, to the server.

The SUBSCRIBE message allows a client to register an interest in one or more topic
names with the server. Messages published to these topics are delivered from the
server to the client as PUBLISH messages. The SUBSCRIBE message also specifies the
QoS level at which the subscriber wants to receive published messages.

MQTT V3.1 Protocol Specification

26 of 42

Fixed header

The table below shows the fixed header format.

bit 7 6 5 4 3 2 1 0

byte 1 Message Type (8) DUP flag QoS level RETAIN

1 0 0 0 0 0 1 x

byte 2 Remaining Length

QoS level

SUBSCRIBE messages use QoS level 1 to acknowledge multiple subscription
requests. The corresponding SUBACK message is identified by matching the
Message ID. Retries are handled in the same way as PUBLISH messages.

DUP flag

Set to zero (0). This means that the message is being sent for the first time. See
DUP for more details.

RETAIN flag

Not used.

Remaining Length field

The length of the payload. It can be a multibyte field.

Variable header

The variable header contains a Message ID because a SUBSCRIBE message has a QoS
level of 1. See Message identifiers for more details.

The table below shows an example format for the variable header with a Message ID of
10.

Description 7 6 5 4 3 2 1 0

Message Identifier

byte 1 Message ID MSB (0) 0 0 0 0 0 0 0 0

byte 2 Message ID LSB (10) 0 0 0 0 1 0 1 0

Payload

The payload of a SUBSCRIBE message contains a list of topic names to which the client
wants to subscribe, and the QoS level at which the client wants to receive the
messages. The strings are UTF-encoded, and the QoS level occupies 2 bits of a single
byte. The topic strings may contain special Topic wildcard characters to represent a set

MQTT V3.1 Protocol Specification

27 of 42

of topics. These topic/QoS pairs are packed contiguously as shown in the example
payload in the table below.

Topic name "a/b"

Requested QoS 1

Topic name "c/d"

Requested QoS 2

Topic names in a SUBSCRIBE message are not compressed.

The format of the example payload is shown in the table below.

Description 7 6 5 4 3 2 1 0

Topic name

byte 1 Length MSB (0) 0 0 0 0 0 0 0 0

byte 2 Length LSB (3) 0 0 0 0 0 0 1 1

byte 3 'a' (0x61) 0 1 1 0 0 0 0 1

byte 4 '/' (0x2F) 0 0 1 0 1 1 1 1

byte 5 'b' (0x62) 0 1 1 0 0 0 1 0

Requested QoS

byte 6 Requested QoS (1) x x x x x x 0 1

Topic Name

byte 7 Length MSB (0) 0 0 0 0 0 0 0 0

byte 8 Length LSB (3) 0 0 0 0 0 0 1 1

byte 9 'c' (0x63) 0 1 1 0 0 0 1 1

byte 10 '/' (0x2F) 0 0 1 0 1 1 1 1

byte 11 'd' (0x64) 0 1 1 0 0 1 0 0

Requested QoS

byte 12 Requested QoS (2) x x x x x x 1 0

Assuming that the requested QoS level is granted, the client receives PUBLISH
messages at less than or equal to this level, depending on the QoS level of the original
message from the publisher. For example, if a client has a QoS level 1 subscription to a
particular topic, then a QoS level 0 PUBLISH message to that topic is delivered to the
client at QoS level 0. A QoS level 2 PUBLISH message to the same topic is downgraded
to QoS level 1 for delivery to the client.

A corollary to this is that subscribing to a topic at QoS level 2 is equivalent to saying "I

MQTT V3.1 Protocol Specification

28 of 42

would like to receive messages on this topic at the QoS at which they are published".

This means a publisher is responsible for determining the maximum QoS a message can
be delivered at, but a subscriber is able to downgrade the QoS to one more suitable for
its usage. The QoS of a message is never upgraded.

The Requested QoS field is encoded in the byte following each UTF-encoded topic name
as shown in the table below.

bit 7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Reserved Reserved QoS level

x x x x x x

The upper 6 bits of this byte are not used in the current version of the protocol. They
are reserved for future use.

A request with both QoS level bits set should be considered an invalid packet and the
connection closed.

Response

When it receives a SUBSCRIBE message from a client, the server responds with a
SUBACK message.

A server may start sending PUBLISH messages due to the subscription before the client
receives the SUBACK message.

Note that if a server implementation does not authorize a SUBSCRIBE request to be
made by a client, it has no way of informing that client. It must therefore make a
positive acknowledgement with a SUBACK, and the client will not be informed that it
was not authorized to subscribe.

A server may chose to grant a lower level of QoS than the client requested. This could
happen if the server is not able to provide the higher levels of QoS. For example, if the
server does not provider a reliable persistence mechanism it may chose to only grant
subscriptions at QoS 0.

A SUBACK message is sent by the server to the client to confirm receipt of a
SUBSCRIBE message.

A SUBACK message contains a list of granted QoS levels. The order of granted QoS
levels in the SUBACK message matches the order of the topic names in the
corresponding SUBSCRIBE message.

Fixed header

MQTT V3.1 Protocol Specification

29 of 42

The table below shows the fixed header format.

bit 7 6 5 4 3 2 1 0

byte 1 Message Type (9) DUP flag QoS level RETAIN

1 0 0 1 x x x x

byte 2 Remaining Length

QoS level

Not used.

DUP flag

Not used.

RETAIN flag

Not used.

Remaining Length field

The length of the payload. It can be a multibyte field.

Variable header

The variable header contains the Message ID for the SUBSCRIBE message that is being
acknowledged. The table below shows the format of the variable header.

7 6 5 4 3 2 1 0

byte 1 Message ID MSB

byte 2 Message ID LSB

Payload

The payload contains a vector of granted QoS levels. Each level corresponds to a topic
name in the corresponding SUBSCRIBE message. The order of QoS levels in the
SUBACK message matches the order of topic name and Requested QoS pairs in the
SUBSCRIBE message. The Message ID in the variable header enables you to match
SUBACK messages with the corresponding SUBSCRIBE messages.

The table below shows the Granted QoS field encoded in a byte.

bit 7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Reserved Reserved QoS level

x x x x x x

The upper 6 bits of this byte are not used in the current version of the protocol. They
are reserved for future use.

MQTT V3.1 Protocol Specification

30 of 42

The table below shows an example payload.

Granted QoS 0

Granted QoS 2

The table below shows the format of this payload.

Description 7 6 5 4 3 2 1 0

byte 1 Granted QoS (0) x x x x x x 0 0

byte 1 Granted QoS (2) x x x x x x 1 0

An UNSUBSCRIBE message is sent by the client to the server to unsubscribe from
named topics.

Fixed header

The table below shows an example fixed header format.

bit 7 6 5 4 3 2 1 0

byte 1 Message Type (10) DUP flag QoS level RETAIN

1 0 1 0 0 0 1 x

byte 2 Remaining Length

QoS level

UNSUBSCRIBE messages use QoS level 1 to acknowledge multiple unsubscribe
requests. The corresponding UNSUBACK message is identified by the Message ID.
Retries are handled in the same way as PUBLISH messages.

DUP flag

Set to zero (0). This means that the message is being sent for the first time. See
DUP for more details.

RETAIN flag

Not used.

Remaining Length

This is the length of the Payload. It can be a multibyte field.

Variable header

MQTT V3.1 Protocol Specification

31 of 42

The variable header contains a Message ID because an UNSUBSCRIBE message has a
QoS level of 1. See Message identifiers for more details.

The table below shows an example format for the variable header with a Message ID of
10.

Description 7 6 5 4 3 2 1 0

Message Identifier

byte 1 Message ID MSB (0) 0 0 0 0 0 0 0 0

byte 2 Message ID LSB (10) 0 0 0 0 1 0 1 0

Payload

The client unsubscribes from the list of topics named in the payload. The strings are
UTF-encoded and are packed contiguously. Topic names in a UNSUBSCRIBE message
are not compressed. The table below shows an example payload.

Topic Name "a/b"

Topic Name "c/d"

The table below shows the format of this payload.

Description 7 6 5 4 3 2 1 0

Topic Name

byte 1 Length MSB (0) 0 0 0 0 0 0 0 0

byte 2 Length LSB (3) 0 0 0 0 0 0 1 1

byte 3 'a' (0x61) 0 1 1 0 0 0 0 1

byte 4 '/' (0x2F) 0 0 1 0 1 1 1 1

byte 5 'b' (0x62) 0 1 1 0 0 0 1 0

Topic Name

byte 6 Length MSB (0) 0 0 0 0 0 0 0 0

byte 7 Length LSB (3) 0 0 0 0 0 0 1 1

byte 8 'c' (0x63) 0 1 1 0 0 0 1 1

byte 9 '/' (0x2F) 0 0 1 0 1 1 1 1

byte 10 'd' (0x64) 0 1 1 0 0 1 0 0

Response

The server sends an UNSUBACK to a client in response to an UNSUBSCRIBE message.

MQTT V3.1 Protocol Specification

32 of 42

The UNSUBACK message is sent by the server to the client to confirm receipt of an
UNSUBSCRIBE message.

Fixed header

The table below shows the fixed header format.

bit 7 6 5 4 3 2 1 0

byte 1 Message Type (11) DUP flag QoS level RETAIN

1 0 1 1 x x x x

byte 2 Remaining length (2)

0 0 0 0 0 0 1 0

QoS level

Not used.

DUP flag

Not used.

RETAIN flag

Not used.

Remaining Length

The length of the Variable Header (2 bytes).

Variable header

The variable header contains the Message ID for the UNSUBSCRIBE message that is
being acknowledged. The table below shows the format of the variable header.

bit 7 6 5 4 3 2 1 0

byte 1 Message ID MSB

byte 2 Message ID LSB

Payload

There is no payload.

MQTT V3.1 Protocol Specification

33 of 42

The PINGREQ message is an "are you alive?" message that is sent from a connected
client to the server.

See Keep Alive timer for more details.

Fixed header

The table below shows the fixed header format.

bit 7 6 5 4 3 2 1 0

byte 1 Message Type (12) DUP flag QoS level RETAIN

1 1 0 0 x x x x

byte 2 Remaining Length (0)

0 0 0 0 0 0 0 0

The DUP, QoS, and RETAIN flags are not used.

Variable header

There is no variable header.

Payload

There is no payload.

Response

The response to a PINGREQ message is a PINGRESP message.

A PINGRESP message is the response sent by a server to a PINGREQ message and
means "yes I am alive".

See Keep Alive timer for more details.

Fixed header

The table below shows the fixed header format:

bit 7 6 5 4 3 2 1 0

byte 1 Message Type (13) DUP flag QoS level RETAIN

1 1 0 1 x x x x

MQTT V3.1 Protocol Specification

34 of 42

bit 7 6 5 4 3 2 1 0

byte 2 Remaining Length (0)

0 0 0 0 0 0 0 0

The DUP, QoS, and RETAIN flags are not used.

Payload

There is no payload.

Variable header

There is no variable header.

The DISCONNECT message is sent from the client to the server to indicate that it is
about to close its TCP/IP connection. This allows for a clean disconnection, rather than
just dropping the line.

If the client had connected with the clean session flag set, then all previously
maintained information about the client will be discarded.

A server should not rely on the client to close the TCP/IP connection after receiving a
DISCONNECT.

Fixed header

The fixed header format is shown in the table below.

bit 7 6 5 4 3 2 1 0

byte 1 Message Type (14) DUP flag QoS level RETAIN

1 1 1 0 x x x x

byte 2 Remaining Length (0)

0 0 0 0 0 0 0 0

The DUP, QoS, and RETAIN flags are not used in the DISCONNECT message.

Payload

There is no payload.

Variable header

MQTT V3.1 Protocol Specification

35 of 42

There is no variable header.

MQTT V3.1 Protocol Specification

36 of 42

MQTT delivers messages according to the levels defined in a Quality of Service (QoS).
The levels are described below:

QoS level 0: At most once delivery

The message is delivered according to the best efforts of the underlying TCP/IP
network. A response is not expected and no retry semantics are defined in the
protocol. The message arrives at the server either once or not at all.

The table below shows the QoS level 0 protocol flow.

Client Message and direction Server

QoS = 0 PUBLISH
----------> Action: Publish message to subscribers

QoS level 1: At least once delivery

The receipt of a message by the server is acknowledged by a PUBACK message. If
there is an identified failure of either the communications link or the sending
device, or the acknowledgement message is not received after a specified period of
time, the sender resends the message with the DUP bit set in the message header.
The message arrives at the server at least once. Both SUBSCRIBE and
UNSUBSCRIBE messages use QoS level 1.

A message with QoS level 1 has a Message ID in the message header.

The table below shows the QoS level 1 protocol flow.

Client
Message and

direction
Server

QoS = 1
DUP = 0
Message ID = x

Action: Store
message

PUBLISH
---------->

Actions:

Store message

Publish message to
subscribers

Delete message

Action: Discard
message

PUBACK
<----------

MQTT V3.1 Protocol Specification

37 of 42

If the client does not receive a PUBACK message (either within a time period
defined in the application, or if a failure is detected and the communications
session is restarted), the client may resend the PUBLISH message with the DUP
flag set.

When it receives a duplicate message from the client, the server republishes the
message to the subscribers, and sends another PUBACK message.

QoS level 2: Exactly once delivery

Additional protocol flows above QoS level 1 ensure that duplicate messages are not
delivered to the receiving application. This is the highest level of delivery, for use
when duplicate messages are not acceptable. There is an increase in network
traffic, but it is usually acceptable because of the importance of the message
content.

A message with QoS level 2 has a Message ID in the message header.

The table below shows the QoS level 2 protocol flow. There are two semantics
available for how a PUBLISH flow should be handled by the recipient. They affect
the point within the flow that the message is made available to the subscribers.
The choice of semantic is implementation specific and does not affect the
guarantees of a QoS level 2 flow.

Client
Message and

direction
Server

QoS = 2
DUP = 0
Message ID = x

Action: Store
message

PUBLISH
---------->

Action: Store message

or

Actions:
Store message ID
Publish message to
subscribers

PUBREC
<---------- Message ID = x

Message ID = x PUBREL
---------->

Actions:
Publish message to
subscribers
Delete message

or

Action: Delete message ID

Action: Discard
message

PUBCOMP
<---------- Message ID = x

If a failure is detected, or after a defined time period, the protocol flow is retried
from the last unacknowledged protocol message; either the PUBLISH or PUBREL.

MQTT V3.1 Protocol Specification

38 of 42

See Message delivery retry for more details. The additional protocol flows ensure
that the message is delivered to subscribers once only.

Assumptions for QoS levels 1 and 2

In any network, it is possible for devices or communication links to fail. If this happens,
one end of the link might not know what is happening at the other end; these are
known as in doubt windows. In these scenarios assumptions have to be made about
the reliability of the devices and networks involved in message delivery.

MQTT assumes that the client and server are generally reliable, and that the
communications channel is more likely to be unreliable. If the client device fails, it is
typically a catastrophic failure, rather than a transient one. The possibility of recovering
data from the device is low. Some devices have non-volatile storage, for example flash
ROM. The provision of more persistent storage on the client device protects the most
critical data from some modes of failure.

Beyond the basic failure of the communications link, the failure mode matrix becomes
complex, resulting in more scenarios than the specification for MQTT can handle.

Although TCP normally guarantees delivery of packets, there are certain scenarios
where an MQTT message may not be received. In the case of MQTT messages that
expect a response (QoS >0 PUBLISH, PUBREL, SUBSCRIBE, UNSUBSCRIBE), if the
response is not received within a certain time period, the sender may retry delivery. The
sender should set the DUP flag on the message.

The retry timeout should be a configurable option. However care must be taken to
ensure message delivery does not timeout while it is still being sent. For example,
sending a large message over a slow network will naturally take longer than a small
message over a fast network. Repeatedly retrying a timed-out message could often
make matters worse so a strategy of increasing the timeout value across multiple
retries should be used.

When a client reconnects, if it is not marked clean session, both the client and server
should redeliver any previous in-flight messages.

Other than this "on reconnect" retry behaviour, clients are not required to retry
message delivery. Brokers, however, should retry any unacknowledged message.

Message ordering can be affected by a number of factors, including how many in-flight
PUBLISH flows a client allows and whether the client is single- or multi-threaded. For
purposes of discussion, clients are assumed to be single-threaded at the point packets

MQTT V3.1 Protocol Specification

39 of 42

are written to and read from the network.

For an implementation to provide any guarantees regarding the ordering of messages it
must ensure each stage of the message delivery flows are completed in the order they
were started. For example, in a series of QoS level 2 flows, the PUBREL flows must be
sent in the same order as the original PUBLISH flows:

Client Message and direction Server

PUBLISH 1
---------->
PUBLISH 2
---------->
PUBLISH 3
---------->

PUBREC 1
<----------

PUBREC 2
<----------

 PUBREL 1
---------->

 PUBREC 3
<----------

 PUBREL 2
---------->

 PUBCOMP 1
<----------

 PUBREL 3
---------->

PUBCOMP 2
<----------

PUBCOMP 3
<----------

The number of in-flight messages permitted also has an effect on the type of
guarantees that can be made:

With an in-flight window of 1, each delivery flow is completed before the next one
starts. This guarantees messages are delivered in the order they were submitted.

With an in-flight window greater than 1, message ordering can only be guaranteed
within the QoS level.

A subscription may contain special characters, which allow you to subscribe to multiple
topics at once.

MQTT V3.1 Protocol Specification

40 of 42

The topic level separator is used to introduce structure into the topic, and can therefore
be specified within the topic for that purpose. The multi-level wildcard and single-level
wildcard can be used for subscriptions, but they cannot be used within a topic by the
publisher of a message.

Topic level separator

The forward slash (/) is used to separate each level within a topic tree and provide
a hierarchical structure to the topic space. The use of the topic level separator is
significant when the two wildcard characters are encountered in topics specified by
subscribers.

Multi-level wildcard

The number sign (#) is a wildcard character that matches any number of levels
within a topic. For example, if you subscribe to finance/stock/ibm/#, you receive
messages on these topics:

 finance/stock/ibm
 finance/stock/ibm/closingprice
 finance/stock/ibm/currentprice

The multi-level wildcard can represent zero or more levels. Therefore, finance/#
can also match the singular finance, where # represents zero levels. The topic
level separator is meaningless in this context, because there are no levels to
separate.

The multi-level wildcard can be specified only on its own or next to the topic level
separator character. Therefore, # and finance/# are both valid, but finance# is not
valid. The multi-level wildcard must be the last character used within the topic tree.
For example, finance/# is valid but finance/#/closingprice is not valid.

Single-level wildcard

The plus sign (+) is a wildcard character that matches only one topic level. For
example, finance/stock/+ matches finance/stock/ibm and finance/stock/xyz, but
not finance/stock/ibm/closingprice. Also, because the single-level wildcard
matches only a single level, finance/+ does not match finance.

The single-level wildcard can be used at any level in the topic tree, and in
conjunction with the multilevel wildcard. It must be used next to the topic level
separator, except when it is specified on its own. Therefore, + and finance/+ are
both valid, but finance+ is not valid. The single-level wildcard can be used at the
end of the topic tree or within the topic tree. For example, finance/+ and
finance/+/ibm are both valid.

When you build an application, the design of the topic tree should take into account the
following principles of topic name syntax and semantics:

A topic must be at least one character long.

MQTT V3.1 Protocol Specificationl

41 of 42

Topic names are case sensitive. For example, ACCOUNTS and Accounts are two
different topics.
Topic names can include the space character. For example, Accounts payable is a
valid topic.
A leading "/" creates a distinct topic. For example, /finance is different from
finance. /finance matches "+/+" and "/+", but not "+".
Do not include the null character (Unicode \x0000) in any topic.

The following principles apply to the construction and content of a topic tree:

The length is limited to 64k but within that there are no limits to the number of
levels in a topic tree.
There can be any number of root nodes; that is, there can be any number of topic
trees.

MQTT V3.1 Protocol Specification

42 of 42

