Hi , I am using stm32f030f4p6tr in TSSOP20 package. My configuration is as follow:

1. keil MDK 5

2. cube mx

3. GPIO PIN PA2, PA1, PA7, PA9, PA10 and PB1.

4. Timer 16 used with interrupt global interrupt.

5. Timer 3 with output compare no output mode

6. Timer 14 and timer 17 for PWM generation.

Problem is that timer 16 has hang or stop working for 1 sec.

By using six GPIO I am generating some sequence. At every timer interrupt occurred the sequence changes. The frequency is generated by this sequence I want to change frequency linearly from 5 Hz to 294 Hz . For changing this frequency of sequence I am using TIMER 3 in output compare no output mode. I was checking timer 3 counter value and after the 10000 count of timer 3 the htim16.Init.Period changes.

This is works but after some changing frequency the timer 16 hang for sec. I didn’t understand what happen. I think there  is conflict between timer 16 or timer 3.

Please help me.  

Code 

#include "main.h"
#include "stm32f0xx_hal.h"
 
/* USER CODE BEGIN Includes */
 
/* USER CODE END Includes */
 
/* Private variables ---------------------------------------------------------*/
TIM_HandleTypeDef htim3;
TIM_HandleTypeDef htim14;
TIM_HandleTypeDef htim16;
TIM_HandleTypeDef htim17;
 
/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/
 
/* USER CODE END PV */
 
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
void Error_Handler(void);
static void MX_GPIO_Init(void);
static void MX_TIM3_Init(void);
static void MX_TIM14_Init(void);
static void MX_TIM16_Init(void);
static void MX_TIM17_Init(void);
                                     
void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim);
                                 
 
/* USER CODE BEGIN PFP */
/* Private function prototypes -----------------------------------------------*/
 
/* USER CODE END PFP */
 
/* USER CODE BEGIN 0 */
int count=0,tim_pule16, ref_delay=3,step_delay=0, delay_microsecond=50,check;//tim duration change low frequency side mosfet                               
unsigned long  tim_duration=250,phase=0;
float tim_f=1000;
unsigned  long start_time=0 ,end_time=0,time=0,timeSlap=500,value=0,value1=800,input_capture=10000,tim_duration1;
 
unsigned  long  start_value=0,end_value=0,total =79,start_value1=0,start_value2,start_value3,check17=0,check16;
long duty_cycle_timer17=197,tim_13_count=65535;
/*
 
555 70%
479 60%
384 50%
262 33%
197 25%
  
10% 76
*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
    if (htim->Instance==TIM16) //check if the interrupt comes from TIM17
        {
            if(count<5){
        count++;
            }
             
    else
            {
                count=0;
            }  
        }
    }
 
 
/* USER CODE END 0 */
 
int main(void)
{
 
  /* USER CODE BEGIN 1 */
 
  /* USER CODE END 1 */
 
  /* MCU Configuration----------------------------------------------------------*/
 
  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();
 
  /* Configure the system clock */
  SystemClock_Config();
 
  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_TIM3_Init();
  MX_TIM14_Init();
  MX_TIM16_Init();
  MX_TIM17_Init();
 
  /* USER CODE BEGIN 2 */
HAL_TIM_PWM_Start(&htim17,TIM_CHANNEL_1);
HAL_TIM_PWM_Start(&htim14,TIM_CHANNEL_1);
HAL_TIM_Base_Start_IT(&htim16);
HAL_TIM_Base_Start(&htim3);
 
  /* USER CODE END 2 */
 
  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    //  HAL_TIM_Base_Start_IT(&htim16);
  /* USER CODE END WHILE */
            start_value=htim3.Instance->CNT;
    if(tim_duration>=17){
 
     
 
         
    if(start_value==5000)
        {phase=0;
        tim_duration=tim_duration-1;
    TIM16->ARR=tim_duration;
                                                                                 
    }
     
         
    }else {
    HAL_TIM_Base_Stop(&htim3);}
     
     
     
     
         
  /* USER CODE BEGIN 3 */
switch (count){
            case 0:{
                 
         
                 
                 
                 
                HAL_GPIO_WritePin(GPIOA,GPIO_PIN_2,GPIO_PIN_RESET);//A
                HAL_GPIO_WritePin(GPIOA,GPIO_PIN_1,GPIO_PIN_SET);//B
                HAL_GPIO_WritePin(GPIOA,GPIO_PIN_10,GPIO_PIN_RESET);//C
             
                HAL_GPIO_WritePin(GPIOA,GPIO_PIN_5,GPIO_PIN_SET);//A
                HAL_GPIO_WritePin(GPIOB,GPIO_PIN_1,GPIO_PIN_RESET);//B
                HAL_GPIO_WritePin(GPIOA,GPIO_PIN_9,GPIO_PIN_RESET);//C
                 
             
                 
                break;
                }
            case 1:{
                 
     
                 
                HAL_GPIO_WritePin(GPIOA,GPIO_PIN_2,GPIO_PIN_RESET);//A
                HAL_GPIO_WritePin(GPIOA,GPIO_PIN_1,GPIO_PIN_RESET);//B
                HAL_GPIO_WritePin(GPIOA,GPIO_PIN_10,GPIO_PIN_SET);//C
             
                HAL_GPIO_WritePin(GPIOA,GPIO_PIN_5,GPIO_PIN_SET);//A
                HAL_GPIO_WritePin(GPIOB,GPIO_PIN_1,GPIO_PIN_RESET);//B
                HAL_GPIO_WritePin(GPIOA,GPIO_PIN_9,GPIO_PIN_RESET);//C
     
                break;
                }
            case 2:{
                 
     
                 
                HAL_GPIO_WritePin(GPIOA,GPIO_PIN_2,GPIO_PIN_RESET);//A
                HAL_GPIO_WritePin(GPIOA,GPIO_PIN_1,GPIO_PIN_RESET);//B
                HAL_GPIO_WritePin(GPIOA,GPIO_PIN_10,GPIO_PIN_SET);//C
             
                HAL_GPIO_WritePin(GPIOA,GPIO_PIN_5,GPIO_PIN_RESET);//A
                HAL_GPIO_WritePin(GPIOB,GPIO_PIN_1,GPIO_PIN_SET);//B
                HAL_GPIO_WritePin(GPIOA,GPIO_PIN_9,GPIO_PIN_RESET);//C
             
                 
                break;
                }
            case 3:{
         
             
                HAL_GPIO_WritePin(GPIOA,GPIO_PIN_2,GPIO_PIN_SET);//A
                HAL_GPIO_WritePin(GPIOA,GPIO_PIN_1,GPIO_PIN_RESET);//B
                HAL_GPIO_WritePin(GPIOA,GPIO_PIN_10,GPIO_PIN_RESET);//C
             
                HAL_GPIO_WritePin(GPIOA,GPIO_PIN_5,GPIO_PIN_RESET);//A
                HAL_GPIO_WritePin(GPIOB,GPIO_PIN_1,GPIO_PIN_SET);//B
                HAL_GPIO_WritePin(GPIOA,GPIO_PIN_9,GPIO_PIN_RESET);//C
                 
                break;
                }
            case 4:{
     
                 
                HAL_GPIO_WritePin(GPIOA,GPIO_PIN_2,GPIO_PIN_SET);//A
                HAL_GPIO_WritePin(GPIOA,GPIO_PIN_1,GPIO_PIN_RESET);//B
                HAL_GPIO_WritePin(GPIOA,GPIO_PIN_10,GPIO_PIN_RESET);//C
             
            HAL_GPIO_WritePin(GPIOA,GPIO_PIN_5,GPIO_PIN_RESET);//A
                HAL_GPIO_WritePin(GPIOB,GPIO_PIN_1,GPIO_PIN_RESET);//B
                HAL_GPIO_WritePin(GPIOA,GPIO_PIN_9,GPIO_PIN_SET);//C
             
                break;
                }
            case 5:{
     
                 
             
                 
                HAL_GPIO_WritePin(GPIOA,GPIO_PIN_2,GPIO_PIN_RESET);//A
                HAL_GPIO_WritePin(GPIOA,GPIO_PIN_1,GPIO_PIN_SET);//B
                HAL_GPIO_WritePin(GPIOA,GPIO_PIN_10,GPIO_PIN_RESET);//C
             
                HAL_GPIO_WritePin(GPIOA,GPIO_PIN_5,GPIO_PIN_RESET);//A
                HAL_GPIO_WritePin(GPIOB,GPIO_PIN_1,GPIO_PIN_RESET);//B
                HAL_GPIO_WritePin(GPIOA,GPIO_PIN_9,GPIO_PIN_SET);//C
                 
 
                 
                break;
                 
                }
  /* USER CODE BEGIN 3 */
 
  }
    }
  }
 
   
  /* USER CODE END 3 */
 
 
 
/** System Clock Configuration
*/
void SystemClock_Config(void)
{
 
  RCC_OscInitTypeDef RCC_OscInitStruct;
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
 
    /**Initializes the CPU, AHB and APB busses clocks
    */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = 16;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
 
    /**Initializes the CPU, AHB and APB busses clocks
    */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
 
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
  {
    Error_Handler();
  }
 
    /**Configure the Systick interrupt time
    */
  HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
 
    /**Configure the Systick
    */
  HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
 
  /* SysTick_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}
 
/* TIM3 init function */
static void MX_TIM3_Init(void)
{
 
  TIM_ClockConfigTypeDef sClockSourceConfig;
  TIM_MasterConfigTypeDef sMasterConfig;
  TIM_OC_InitTypeDef sConfigOC;
 
  htim3.Instance = TIM3;
  htim3.Init.Prescaler = 0;
  htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim3.Init.Period = tim_13_count;
  htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
  {
    Error_Handler();
  }
 
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
  {
    Error_Handler();
  }
 
  if (HAL_TIM_OC_Init(&htim3) != HAL_OK)
  {
    Error_Handler();
  }
 
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
 
  sConfigOC.OCMode = TIM_OCMODE_TIMING;
  sConfigOC.Pulse = 0;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  if (HAL_TIM_OC_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  {
    Error_Handler();
  }
 
}
 
/* TIM14 init function */
static void MX_TIM14_Init(void)
{
 
  TIM_OC_InitTypeDef sConfigOC;
 
  htim14.Instance = TIM14;
  htim14.Init.Prescaler = 4;
  htim14.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim14.Init.Period = 100;
  htim14.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  if (HAL_TIM_Base_Init(&htim14) != HAL_OK)
  {
    Error_Handler();
  }
 
  if (HAL_TIM_PWM_Init(&htim14) != HAL_OK)
  {
    Error_Handler();
  }
 
  sConfigOC.OCMode = TIM_OCMODE_PWM1;
  sConfigOC.Pulse = 50;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  if (HAL_TIM_PWM_ConfigChannel(&htim14, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  {
    Error_Handler();
  }
 
  HAL_TIM_MspPostInit(&htim14);
 
}
 
/* TIM16 init function */
static void MX_TIM16_Init(void)
{
 
  TIM_OC_InitTypeDef sConfigOC;
  TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig;
 
  htim16.Instance = TIM16;
  htim16.Init.Prescaler = 250;
  htim16.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim16.Init.Period = tim_duration;
  htim16.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim16.Init.RepetitionCounter = 0;
  if (HAL_TIM_Base_Init(&htim16) != HAL_OK)
  {
    Error_Handler();
  }
 
  if (HAL_TIM_OC_Init(&htim16) != HAL_OK)
  {
    Error_Handler();
  }
 
  sConfigOC.OCMode = TIM_OCMODE_TIMING;
  sConfigOC.Pulse = tim_duration/2;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
  sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
  if (HAL_TIM_OC_ConfigChannel(&htim16, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  {
    Error_Handler();
  }
 
  sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
  sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
  sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
  sBreakDeadTimeConfig.DeadTime = 0;
  sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
  sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
  sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
  if (HAL_TIMEx_ConfigBreakDeadTime(&htim16, &sBreakDeadTimeConfig) != HAL_OK)
  {
    Error_Handler();
  }
 
}
 
/* TIM17 init function */
static void MX_TIM17_Init(void)
{
 
  TIM_OC_InitTypeDef sConfigOC;
  TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig;
 
  htim17.Instance = TIM17;
  htim17.Init.Prescaler = 0;
  htim17.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim17.Init.Period = 788;
  htim17.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim17.Init.RepetitionCounter = 0;
  if (HAL_TIM_Base_Init(&htim17) != HAL_OK)
  {
    Error_Handler();
  }
 
  if (HAL_TIM_PWM_Init(&htim17) != HAL_OK)
  {
    Error_Handler();
  }
 
  sConfigOC.OCMode = TIM_OCMODE_PWM1;
  sConfigOC.Pulse = 197;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
  sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
  if (HAL_TIM_PWM_ConfigChannel(&htim17, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  {
    Error_Handler();
  }
 
  sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
  sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
  sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
  sBreakDeadTimeConfig.DeadTime = 0;
  sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
  sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
  sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
  if (HAL_TIMEx_ConfigBreakDeadTime(&htim17, &sBreakDeadTimeConfig) != HAL_OK)
  {
    Error_Handler();
  }
 
  HAL_TIM_MspPostInit(&htim17);
 
}
 
/** Configure pins as
        * Analog
        * Input
        * Output
        * EVENT_OUT
        * EXTI
*/
static void MX_GPIO_Init(void)
{
 
  GPIO_InitTypeDef GPIO_InitStruct;
 
  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();
 
  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_5|GPIO_PIN_9
                          |GPIO_PIN_10, GPIO_PIN_RESET);
 
  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOB, GPIO_PIN_1, GPIO_PIN_RESET);
 
  /*Configure GPIO pins : PA1 PA2 PA5 PA9
                           PA10 */
  GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_5|GPIO_PIN_9
                          |GPIO_PIN_10;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
 
  /*Configure GPIO pin : PB1 */
  GPIO_InitStruct.Pin = GPIO_PIN_1;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
 
}
 
/* USER CODE BEGIN 4 */
 
/* USER CODE END 4 */
 
/**
  * @brief  This function is executed in case of error occurrence.
  * @param  None
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler */
  /* User can add his own implementation to report the HAL error return state */
  while(1)
  {
  }
  /* USER CODE END Error_Handler */
}
 
#ifdef USE_FULL_ASSERT
 
/**
   * @brief Reports the name of the source file and the source line number
   * where the assert_param error has occurred.
   * @param file: pointer to the source file name
   * @param line: assert_param error line source number
   * @retval None
   */
void assert_failed(uint8_t* file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
    ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
 
}
 
#endif
 
/**
  * @}
  */
 
/**
  * @}
*/